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Summary
The holobiont perspective takes into account the complete system of an animal
including its microbiomes and to some extent the factors that form its external
environment. This view has a scientific motivation: In the case that the microbiome
affects the host, studying the host in isolation severely limits access to the complete
information needed to understand the biology of the host. As a model for such a
“holobiont” system, a starting point was taken in cattle and focused on the rumen and
the interface that connects its inherent microbiome to the metabolism of the host. As
the rumen microbiome produces a vital component of metabolites that the host budgets
for energy and nutrient assimilation, it has a wide potential to impact the host. The
association between the host and its rumen microbiome has made it a focal point for
modulation strategies to improve health, nutrition and sustainable production of
ruminants. However, the complexity of the rumen microbiome and its interactions with
the host represent major challenges that must be overcome before microbiome-based
approaches can be used in practice. To improve reconstruction of the rumen
microbiome, a high-resolution dataset was generated for deep analysis from 80 cattle
subjected to a feedlot trial. Here, the rumen microbiome was sampled over time, and
host tissue (rumen wall and liver) samples were collected upon sacrifice, after rigorous
measurement of the cattle’s key performance traits (KPTs) and methane emissions.

To study the ruminant holobiont, molecular layers in both the host and its rumen
microbiome were reconstructed. Multiple molecular layers (DNA, RNA, protein,
metabolites, and glycans) as well as the host phenotype were analyzed, in order to track
how potential interactions affected metabolism in 24 individual animals that exhibited
the highest natural variation in measured methane yield. As most biological variation
of an organism is encoded in the genome, DNA sequencing is central to forming a
foundation upon which to assemble the holobiont. To further enhance our DNA
analyses, long-read and high accuracy short-read shotgun metagenome sequencing was
applied to reconstruct the microbial genomes of the rumen microbiome. To track which
genes were expressed, transcriptomics was applied, and to analyze the presence of
translated proteins and their derived metabolites, also proteomics and metabolomics.
For complex eukaryotic populations that are unamenable to shotgun sequencing
approaches, such as the protozoa and fungi, genomes were sourced from collaborative
projects.

Analyzing a single molecular layer requires a specific set of technical tools. For this
purpose, it is described how microbial genomes can be reconstructed, and how their
relevant metabolic functions can be identified. Specifically in relation to the
carbohydrate-active enzymes (CAZymes) that enable ruminants to assimilate carbon

13



and energy from plant fibers, representing the basis for the energy budget of the host.
As it was not possible to identify a suitable pipeline with the tools necessary to analyze
and compare the metabolic function of the archaeal and bacterial genomes generated in
our datasets, an easy to use platform for analyzing metagenome-assembled genomes
(MAGs) was developed. This pipeline is now distributed on Bioconda as CompareM2.

To apply the wide tool set that was put together and attempt to improve resolution and
general understanding of how the ruminant host and its microbiome function as an
integrated unit, an experimental cattle holobiont dataset was analyzed. The sampled
molecular layers were refined to become biologically relevant representations on which
integrative holo-omic methods could be applied to identify and investigate possible
host-microbiome interactions. In practice, simpler computational dimensionality
reduction methods may offer greater interpretability and allow more direct biological
interpretation than more complex computational methods. Applying these methods to
our experimental data led to the discovery that the protozoal fraction of the rumen
seemingly drives two exclusive community types across the individual animals that
were sampled, which have previously been described from micrography and 18S
studies. These are referred to as RCT-A and -B (rumen community type). RCT-B is
dominated by protozoa affiliated to Epidinium spp. that were observed to employ a
plethora of fiber-degrading enzymes, which most likely provide favorable conditions
for saccharolytic bacteria such as Prevotella spp. Conversely RCT-A is dominated by
Isotricha and Entodinium protozoal species and harbors a wider representation of fiber,
protein and amino acid fermenters. While no clear host effect for these rumen
community types is found, there are signs in the more complex network analysis based
computational methods that certain microbial populations of Acutalibacteraceae
prevalent in RCT-A affect methionine metabolism in the rumen wall. This calls for
further refinement of the holo-omic analyses and biological characterization.

Finally, our work highlights the need for de facto standards to refine individual
molecular layers, and to find common methods for data integration across these
molecular layers that represent the host-microbiome axis.
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Norsk sammendrag
Holobiont-perspektivet tar hensyn til det komplette systemet til et dyr, inkludert dets
mikrobiomer og, til en viss grad, faktorene som danner dets ytre miljø. Dette
perspektivet har en vitenskapelig motivasjon: I tilfeller der mikrobiomene påvirker
verten, begrenser det å studere verten i isolasjon tilgangen til den komplette
informasjonen som er nødvendig for å forstå vertens biologi. Som en modell for et slikt
holobiont-system har vi tatt utgangspunkt i storfe, med fokus på vomma og
grensesnittet som forbinder dets iboende mikrobiom med vertens metabolisme,
spesifikt vomveggen og leveren. Siden mikrobiomet i vomma produserer en viktig
komponent av metabolitter som verten bruker til energibudsjettering og næringsopptak,
har det et stort potensial til å påvirke verten. Sammenhengen mellom verten og dens
iboende vommikrobiom er derfor et fokusområde for moduleringsstrategier for å
forbedre helse, ernæring og bærekraftig storfeproduksjon. Vommikrobiomets
kompleksitet og dets interaksjoner med verten representerer imidlertid store
utfordringer som må takles før mikrobiom-baserte tilnærminger kan brukes i praksis.
For å forbedre rekonstruksjonen av vommikrobiomet har vi generert et høyoppløselig
datasett for dyp analyse fra 80 storfe som ble eksponert for en fôringsprøve. Her ble
vommikrobiomet tatt prøver av over tid, og prøver fra vomveggen og leveren ble
samlet ved avliving, kort tid etter grundige målinger av storfeets
nøkkelprestasjonsegenskaper, inkludert metanutslipp.

For å studere holobionten hos drøvtyggere, rekonstruerte vi både molekylære lag hos
verten og i dens iboende vommikrobiom. For å forstå hvordan potensielle interaksjoner
påvirket metabolismen tok vi hensyn til flere molekylære lag (DNA, RNA, proteiner,
metabolitter og glykans) samt vertens fenotype, i 24 individuelle storfe som viste den
høyeste naturlige variasjonen i målt metanproduksjon. Siden praktisk talt all biologisk
variasjon av en organisme er kodet i genomet, er DNA-sekvensering sentralt for å
danne et grunnlag for å samle holobionten. For ytterligere å forbedre våre
DNA-analyser, kombinerte vi lange sekvenser (long-read) og høy-presisjon shotgun
metagenomsekvensering for å rekonstruere mikrobielle genomer i vommikrobiomet.
For å kartlegge hvilke gener som ble uttrykt, anvendte vi transkriptomikk, og for å
analysere tilstedeværelsen av translaterte proteiner og deres avledede metabolitter, ble
det brukt proteomikk og metabolomikk. For komplekse eukaryote populasjoner som
ikke lar seg analysere med shotgun-sekvenseringsmetoder, som protozoer og sopp,
hentet vi genomer fra samarbeidende prosjekter.

Analyse av et enkelt molekylært lag krever et spesifikt sett med tekniske verktøy. I
denne sammenhengen beskriver vi hvordan mikrobielle genomer kan rekonstrueres og
hvordan deres relevante metabolske funksjoner kan identifiseres. Mer spesifikt,
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fokuserer vi på karbohydrataktive enzymer i vomma som gjør det mulig for
drøvtyggere å tilegne seg karbon og energi fra plantefibre, som utgjør grunnlaget for
vertens energibudsjett. Ettersom vi ikke klarte å identifisere en passende pipeline med
verktøyene som var nødvendige for å analysere og sammenligne den metabolske
funksjonen til de arkeiske og bakterielle genomene som ble generert i våre datasett,
utviklet vi en brukervennlig plattform for å analysere metagenom-assembled genomes
(MAGs). Denne pipelinen distribueres nå på Bioconda som CompareM2.

For å kunne utnytte det brede verktøysettet vi har satt sammen, og dermed forsøke å
forbedre oppløsningen og den generelle forståelsen av hvordan verten og dens
mikrobiom fungerer som en integrert enhet, satte vi oss fore å analysere
eksperimentelle data fra storfe-holobiontet. Vi forbedret allerede testede molekylære
lag til å bli biologisk relevante representasjoner, og anvendte integrerte holo-omiske
metoder for å identifisere og undersøke mulige interaksjoner mellom vert og
mikrobiom. I praksis finner vi at de enklere beregningsmetodene for
dimensjonsreduksjon tilbyr større tolkbarhet og gir en mer direkte biologisk tolkning
enn mer komplekse beregningsmetoder. Ved å bruke disse metodene på våre
eksperimentelle data oppdaget vi at protozoa-fraksjonen av vomma tilsynelatende
driver to eksklusive samfunnstyper på tvers av individuelle dyr, som tidligere har blitt
beskrevet i mikrografi og 18S-studier. Vi refererer til disse som RCT-A og -B
(vomsamfunnstyper). RCT-B domineres av protozoer tilknyttet Epidinium spp. som ble
observert å utnytte et mangfold av fiber-nedbrytende enzymer, noe vi mener gir
gunstige forhold for andre sukker-nedbrytende bakterier som Prevotella spp. Motsatt
domineres RCT-A av protozoiske arter fra Isotricha og Entodinium, og har i tillegg en
bredere representasjon av fiber-, protein-, og aminosyrenedbrytende organismer. Selv
om vi ikke finner en klar vertseffekt for disse vomsamfunnstypene, indikerer de mer
komplekse nettverksanalysebaserte beregningsmetodene at visse mikrobiologiske
populasjoner av Acutalibacteraceae som er utbredt i RCT-A påvirker
metioninmetabolismen i vomveggen. Dette krever ytterligere forbedring av de
holo-omiske analysene og biologisk karakterisering.

Avslutningsvis fremhever arbeidet vårt behovet for å sette standarder for å forbedre
resolusjonen av individuelle molekylære lag, og for å finne gullstandarden for
data-integrasjon på tvers av de molekylære lagene som representerer
vert-mikrobiom-aksene.

(Translated to Norwegian by Thea Os Andersen)
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1. Introduction

The biology of the cattle holobiont

Origin of the holobiont
Animals live in a microbial world. The endosymbiotic theory states that eukaryotes
themselves arose from the symbiosis of microorganisms 1.8–2.7 gigayears ago, when
an Asgard-related archaeon engulfed a Rickettsiales-related bacterium1,2. The archaeon
assimilated the metabolic function of the bacterium by engulfing the complete cell. The
assimilated bacterium “mitochondrion” performed respiration for the host, and in
return was provided with a protected environment where it could thrive. Over time,
coevolution between the host and the assimilated partner gradually intertwined the two
into becoming mutually interdependent through their shared biology. In the case of the
mitochondrion, several of its key genes now reside in the host genome, rendering an
escape of the assimilated cell line unlikely1,2. In an analogous model of co-dependence
but on a grander and more complex scale, ancestors of cattle have succeeded to
co-evolve with and assimilate the metabolic function of a diverse complex of
microorganisms within their rumen3,4. Herein, cattle maintain a protected environment
where microorganisms can thrive to break down plant fibers for the microbiome itself,
and the host can harness the energy and nutrition extracted from these. Many of the
microorganisms observed are endemic to the rumen of cattle, which means that they
are not observe to live outside this niche. Theoretically, only a limited number of
pathways are necessary to convert plant fibers into energy for the host5. However, the
rumen contains thousands of species representing a wide radiation of the tree of life.
Archaea, bacteria, protozoa and fungi establish an intricate network, where the plant
fibers in the diet are refined to become a nutritious food source for the cattle. Despite
decades of research focus, many of the interactions within this microbiome and
between it and the host are still largely uncharacterized.

Metabolic cascade of plant fiber deconstruction in the rumen
As the rumen is an anoxic or at least microoxic compartment within the gastrointestinal
tract of cattle, the microorganisms inhabiting this environment must rely on
fermentation to obtain energy and carbon4. To address this, the dominant pathways that
convert plant fibers into volatile fatty acids (VFA) will be highlighted, as these
represent the most important energy source for the host. The first step of this metabolic
cascade of the rumen starts with ingestion of plant fiber polysaccharides such as

C. M. Kobel | PhD thesis 2025
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cellulose, hemicelluloses, and pectins. Catabolically, these are first degraded by
microbially encoded carbohydrate active enzymes (CAZyme) into oligosaccharides
and ultimately to their monosaccharide components (e.g. glucose), that fuel microbial
populations and processes, mainly by entering glycolysis4. Then, glycolysis converts
glucose into pyruvate, yielding ATP (adenosine triphosphate) and reduced
nicotinamide adenine dinucleotide (NADH), which can be used to drive independent
biological processes and anabolism4. Most importantly for the cascade, pyruvate is
converted into VFAs such as acetate, propionate, and butyrate6. Acetate and butyrate
are produced via acetyl-CoA, whereas propionate can be produced via succinate and
propanoyl-CoA7. These metabolic actions can be grouped into three trophic layers8: (I)
recalcitrant plant polymer degradation, (II) mixed polymer degradation and sugar
fermentation, and (III) exclusive sugar fermentation.

Hydrogen is produced as a by-product along most fermentation pathways, including
glycolysis, but can feed into various sinks. As dihydrogen (H2) has a high potential for
oxidation, it represents an energy loss if not incorporated into a compound that the host
can assimilate9. From this perspective, the best-case scenario is to produce propionate
by the reduction of fumarate and a succinate intermediary, or to produce acetate.
Unfortunately, fumarate concentrations in the rumen may be limiting and the
production of acetate may not be energetically favorable, although this depends on the
hydrogen partial pressure of the substrate10. The most common fate of
fermentation-derived H2 is methanogenesis. In terms of free energy, this process is the
most favorable11, but it represents a loss for the animal as the methane leaves the rumen
as eructations, known colloquially as burps or belching. An exemplar alternative
hydrogen sink is the Wood-Ljungdahl pathway, where hydrogen acts as electron
acceptor for the assimilation of carbon from carbon dioxide (CO2) resulting in the
production of acetate12. Hydrogen sinks play an important role in maintaining
homeostasis of the pathways that produce it. Which sinks are energetically favorable
depends on the hydrogen partial pressure. At lower hydrogen partial pressures
methanogenesis is the most favorable option, but at higher pressures alternatives like
the Wood-Ljungdahl pathway may become energetically favorable13.

Species richness and trophic layers of the rumen
While the foundational microbial functions that convert complex plant material into
energy-yielding nutrients are well-characterized in the rumen, the elaborate web of
microbial populations that perform these essential processes are not wholly understood.
Here follows an overview of the currently surveyed diversity of the microorganisms
and their central functions that give them a competitive advantage warranting their
residence in the rumen microbiome.

Rumen-Centric Assembly of the Cattle Holobiont - Synopsis
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Overview and biases

Protozoa, archaea, bacteria, fungi and their associated viruses inhabit the rumen4,14. The
taxonomic variety of the rumen microbiota might be justified by their ability to express
and utilize a diverse set of metabolic functions leading into the digesta-wall-liver axis
that ultimately drives the host. For archaea and bacteria, metagenomic assembly ideally
recovers high-quality population-level genomes. For eukaryotes, represented by fungi
(class Neocallimastigomycetes) and ciliates (class Litostomatea), metagenomic
assembly requires unfeasibly deep sequencing, because their genomes are large and
complex. For the protozoa, mostly single-amplified genomes (SAG) are available. In
this approach, individual cells are isolated from solution and their genomes are
amplified using random DNA primers15,16. The fungi are also manually isolated, but
can be cultured on grass substrates thus not requiring genome amplification17. Another
factor biasing the presence of genome representations of various species has been
dubbed “the great plate count anomaly”18,19. This refers to the fact that microbial
species can be hard to cultivate in isolation despite their ecological prevalence. This
can be for a number of reasons: Some microorganisms might require specific substrates
and essential nutrients to enable their growth. These compounds may be unknown for
many species or their synthesis may be technically challenging to formulate18. Many
microorganisms form symbiotic relationships characterized by synthrophy4, where two
species populations are mutually interdependent on metabolites that they each produce.
If a substrate does not support such an obligate beneficial interaction between species,
or if one species is cultured in isolation, cultivation will be futile. After all, it is
probably unnatural for microbes sourced from complex environments to live alone in a
static environment. Modern high-throughput cultivation technologies combine
single-cell sorting and permutations of many substrate combinations to make it
possible to culture many uncharacterized species20. In many cases, genomics on
isolates leads to higher-quality genomes as contamination and erroneous assembly are
the major factors limiting genomic representations21.

Taxonomic domains of the rumen

The kingdom Bacteria encompasses a broad range of taxa with upper estimates in the
thousands of species22, with many distant phyla. Bacteria can vary overwhelmingly in
shape and motility as well as in their metabolic features. Within the rumen of
herbivores, predominant cellulose degraders include Fibrobacter succinogenes of
phylum Fibrobacterota and Ruminococcus flavefaciens and R. albus of phylum
Bacillota4,23,24. Exemplar hemicellulose degraders include Prevotella spp. of the phylum
Bacteroidota as well as Butyrivibrio spp. and Pseudobutyrivibrio, both from the same
family Lachnospiraceae and phylum Bacillota25. Prevotella spp. have been described
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as keystone species in the rumen as they perform a wide range of essential degradative
processes that influence carbon flow and amino acid metabolism26. The products from
plant fiber degradation are predominantly fermented into VFAs as well as other
intermediates such as lactate, succinate, formate, and H2 by many different species27–29.

The protozoa of the rumen are large (40-400µm), complex, single-celled eukaryotic
microorganisms of the class Litostomatea (subclass Trichostomatia)30. They are also
known as ciliates for their cilia-covered outer membrane, which provides a locomotive
force enabling them to roam, forage, and even hunt for prey31. The protozoa have a
relatively large biomass in the rumen, up to 50%, and are found in many ruminant
species14. They have complex organelles and physiological features such as a
mouth-like adoral opening that leads to a tongue-like extrusible peristome, which
ingests feed particles into their esophagus. To add to their versatility, they express a
broad array of CAZymes, many of which are acquired via horizontal gene transfer
from bacteria15, enabling them to feed on plant fibers. Especially Epidinium of
Entodiniomorphida encode a vast array of glycoside hydrolase CAZymes15,32 and are
described as actively attaching to and breaking down plant material30. Because of their
diverse ways of life, protozoa can carry out both bottom-up and top-down33 control of
their environment. As they take part in plant fiber degradation they liberate the
constituent fibers for other species to use from the bottom of the food chain—while
potentially preying on other microorganisms from the top of the same system. The
protozoa may play a significant role in pruning the bacterial populations33 and this
activity represents an important cause of bacterial protein turnover in the rumen34,35.

Rumen protozoa are known to play a part in forming distinct community profiles. In
1962, Eadie36 initially described community profile “types” existing in exclusivity,
which can be defined in terms of the key protozoal species that dominate them. Along
with the gradual refinement of the nomenclature describing the rumen protozoa, these
profile types have been continuously updated and still seem to be ubiquitous among
rumen ecosystems decades later30,37. The most prevalent community profile types are
historically named “type-A” and “type-B”30,36,37. Type A is defined with the presence of
Polyplastron multivesiculatum with or without Diploplastron affine. The B-type is
defined with the presence of Epidinium spp. with or without Eudiplodinium maggii30.

Another property of protozoa that comes from their ciliate coat is that they provide a
microhabitat for other microorganisms to hitchhike38. Methanobacteriaceae are known
such hitchhikers31. As hydrogen is a common side product from the fermentation
performed by protozoa, it has been speculated that hitchhiking methanogens utilize this
hydrogen as an electron donor in their methanogenesis. Protozoa living in low oxygen
environments often do not possess mitochondria but rather hydrogenosomes which are
membrane-bound organelles where pyruvate is fermented to acetate and hydrogen39.

Rumen-Centric Assembly of the Cattle Holobiont - Synopsis
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Pyruvate enters the hydrogenosome and interfaces with a pyruvate:ferredoxin
oxidoreductase that catalyzes oxidative decarboxylation of pyruvate, forming
acetyl-CoA40. The ferredoxin is oxidized by hydrogenases utilizing H+ which is the
source of the H2 being produced. This H2 finally leaves the hydrogenosome and is
available for other metabolic functions like methanogenesis and reductive
acetogenesis.

An entirely different taxonomic domain is the one of archaea, which are infamous for
their extremophile characteristics, in some occurrences being able to fill environments
with high temperatures or salt concentrations41. This is enabled by their distinct
physiology having cell walls constructed with a combination of ester- and ether-linked
lipids, the latter enabling the formation of monolayer lipids spanning the entire
membrane of their cell41. Archaea are ubiquitous in the rumen of cattle where they act
as obligate methanogens42, reducing CO2, CO or formate to methane4,43 using H2 as an
electron donor (hydrogenotrophic). Other substrates for methanogenesis may be acetate
(acetoclastic) and methylated compounds such as methylamines and methanol
(methylotrophic)44. The hydrogenotrophic methanogenesis makes archaea
metabolically closely linked with many taxonomic groups that produce hydrogen via
fermentation. As hydrogenotrophs, archaeal metabolism of H2 facilitates fermentation
homeostasis, which directly affects digestion efficiency. The rumen ecosystem is
receiving considerable attention due to the methanogenic activity alone, as it explains a
large fraction of the total atmospheric greenhouse gas load contributed by agriculture4.
The most abundant clades in the rumen are Methanobrevibacter and Methanosphaera
of the class methanobacteria, as well as Methanomassiliicoccaceae which according to
Henderson et al. 2015 make up 90% of the archaeal clades observed in the rumen45.

While less commonly reported in rumen microbiome surveys, anaerobic gut fungi can
play instrumental roles in feed digestion. Anaerobic fungi are specialized degraders of
plant polysaccharides and often grow and become embedded into the lignin that forms
the outer sheath of plant fibers46. They produce a highly branched rhizoid thallus which
mechanically decomposes the plant fibers47 on which they attach zoospores to spread
on the fiber fragments. These fungi of the rumen belong to the class
Neocallimastigomycetes, family Neocallimastigaceae, and are distributed among six
genera. The Neocallimastigomycetes are only found in ruminants and possess
hydrogenosomes which oxidize pyruvate and produce acetate and H2. They organize
their broad range of CAZymes within cellulosomes, which are structurally unique from
those known in bacteria47, and are able to break down complete plant fibers. Currently,
limited numbers of rumen fungal species are known48. Moreover, their genomes are not
well characterized, but recently genomic representations of 12 species, with genome
sizes ranging from 56 to 210 megabases, have been made publicly available at the JGI
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Mycocosm platform48. Because of the way the rhizoids of fungi are embedded in the
plant fibers, the isolation of their genetic and metabolic biomolecules is not
straightforward, necessitating specific isolation techniques. This leaves the fungi with
an undiscovered potential of their diversity and metabolic capacity, to impose
undiscovered effects on the rumen environment.

Viruses are obligate intracellular parasites affecting all forms of cell-based life49. They
inject their genetic material into the cell and manipulate the translational or
transcriptional machinery of the living organisms to reproduce their genomes and
synthesize viral proteins, before assembling and leaving the cell through lysis or
budding to spread to other susceptible cells50. Viruses are exceptionally genetically
diverse, with genomes consisting of single-stranded or double-stranded DNA, or
single-stranded or double-stranded RNA, each type associated with a variety of unique
infection dynamics and impacts on their host. The vast majority of double-stranded
DNA (dsDNA) viruses, are known as bacteriophages, and exclusively infect bacteria,
making them especially relevant in a metagenomic context50. The numbers of viral
particles in the metazoan gastrointestinal tracts are reported to outnumber bacterial
cells by 10-100 times, thereby indicating a dynamic relationship between the bacteria
and their viruses, with potential to affect the composition and diversity of microbial
populations50,51. A recent study on the moose rumen8 indicates that viruses impose top
down control on microbial species that play a key role in carbohydrate degradation.

Plant fibers and their decomposition

Plant fibers

Plant fibers largely function as a structural component. Their tensile strength works in
conjunction with the cell turgor pressure, allowing plants to grow tall, thin, and
lightweight structures. For this, the necessary properties are strength and resistance
against environmental and biological degradation. These properties may not
immediately make plant fibers an obvious choice as a main feed ingredient.
Nevertheless, as plant fibers are some of the most abundant organic compounds on
earth composed of energy-yielding sugars, an animal thriving off their decomposition
gains a virtually limitless source of food. Box 1 presents an overview of the diverse
fibers that exist in the plants that are relevant for ruminant nutrition.
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Cellulose is a polymer of linked glucose monomers. Adjacent polymers form
hydrogen bonds and make up microfibrils52.

Lignin is the most recalcitrant polymer of the plant cell wall and works as a
cement that holds these cellulose microfibrils together. Lignin is a branched
polymer consisting of cross-linked phenols52. It protects the embedded cellulose
microfibrils as it is not susceptible to hydrolysis.

Hemicellulose is a diverse class of polysaccharides characterized as branched and
typically shorter than cellulose. Hemicellulose consists of many different
saccharides which are linked with glycosidic bonds, and often plays a role in
crosslinking cellulose microfibrils52. A few key examples include:

● Xylans are one form of hemicelluloses containing xylose saccharides.
Homoxylose forms linear chains reminiscent of cellulose, whereas
heteroxylose can form branched chains52. The difference between these
two types is on which atomic positions the polymeric glycosidic links are
formed.

● Mannans are another type of hemicellulose with various subtypes: linear
mannan, galactomannan, glucomannan, and galactoglucomannan.
Mannans have a backbone consisting mostly of mannose and occasionally
glucose53. Galactomannans specifically can be decorated with branches of
galactose.

● Beta-glucans represent a generalization of polysaccharides with a glucose
backbone with many beta-glycosidic bonds in various different positions.
Overall these are ubiquitous amongst distant species as they are found in
the cell walls of fungi, bacteria, yeast as well as in cereal grains such as
oat54.

● Xyloglucans have a backbone consisting of glucose, reminiscent of
cellulose. What sets them apart is that the backbone is decorated with side
chains consisting of various forms of xylans. Xyloglucans are mainly used
for their structural properties in the cell wall, but also show roles in cell
signaling and as an energy source in certain seeds55.

Pectins are structurally complex saccharide polymers with structural functions.
The backbone of pectin consists of galacturonic acid, which is an oxidized form of
galactose56. Homogalacturonans form a linear chain whereas substituted
galacturonans form side chains consisting of xylose or apiose.

Box 1: Walkthrough of the common plant fibers and their structures, which are relevant
to the rumen.
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Carbohydrate-active enzymes and polysaccharide utilization loci

One central dogma of the rumen is that carbohydrate polymers are degraded into
shorter chains by carbohydrate-active enzymes (CAZymes) located on polysaccharide
utilization loci. As plant fiber polysaccharides are highly diverse in their molecular
composition, a diverse set of enzymes is necessary for their monomerization. Highly
similar orthologs of CAZymes can be found between distantly related microorganisms
and fungi, indicating that these genes have been horizontally transferred15,17. Without
this mode of adaptation, the high taxonomic diversity seen in the modern rumen would
not have been possible57. Each CAZyme group catalyzes a unique biochemical function
to carry out the intended reaction. Box 2 presents an overview of the general
classifications used in the CAZy database58.

Glycoside hydrolases (GHs) or glycosidases catalyze hydrolysis of the glycosidic
bond within a glycan. These can be classified into exo- or endo acting categories.
Exo-acting hydrolases act specifically on the glycosidic bond leading to the
terminal saccharide in the polymer, whereas endo-acting can attack glycosidic
bonds in the middle of the polymer.

Glycosyltransferases (GTs) use phosphate-activated compounds that donate a
glycosyl and thereby catalyze breaking up longer polymers. The
phosphate-activated compounds can be saccharide mono- or diphosphonucleotides,
alternatively polyprenol pyrophosphates. In the latter case, some
glycosyltransferases are classified as glycoside hydrolases.

Polysaccharide lyases (PLs) act on uronic acids typically found in the backbone
of glycosaminoglycans where they facilitate beta-elimination of the carboxylic acid
to produce an hexenuronic acid, and a reducing end at the point of cleavage.

Carbohydrate esterases (CEs) catalyze de-O or de-N-acylation of substituted
saccharides. Enzymes of auxiliary activity represent a large class of redox active
enzymes e.g. utilizing lytic polysaccharide monooxygenases (LPMO) which play a
role in degradation of lignin59. Carbohydrate-binding modules do not cleave
polysaccharides but rather bind to these to direct the carbohydrate-active enzymes
to enhance their efficiency of the cleavage. They most often co-occur with
glycoside hydrolases.

Box 2: Definition of CAZyme classes as defined by CAZy60.

A polysaccharide utilization locus (PUL) is a genomically linked co-regulated cluster
of genes that was originally characterized as the starch utilization system (SUS), but
has since been found to engage with a vast diversity of polysaccharides61,62. PULs
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encodes CAZymes as well as factors relevant for binding, regulation, and uptake of a
target polysaccharide. For example, SusD-like, SusC-like and TonB are membrane
lipoproteins that work in conjunction to transport a polysaccharide into the periplasm
of its encoding cell. SusD-like proteins bind to a free polysaccharide substrate and
bring it to the adjacent SusC-like membrane transporter while working as a lid, keeping
other compounds from entering the transporter. SusC makes contact with TonB, which
is embedded in the inner membrane, to release the substrate into the periplasm where it
can be further processed by CAZymes that correspond to the binding affinity of the
SusD-like lipoprotein that first attached to the free substrate61. This ingenious
mechanism has in instances been described as selfish because it allows a cell to gain
the full potential of breaking down a polysaccharide, without sharing the cleaved
products with others61.

As carbohydrate polymers can reach lengths in the µm range55, they cannot be readily
transported inside the cells of the microorganisms that are of a similar size as the
substrates that they try to eat. As a solution, some species of bacteria use complex
structures called “cellulosomes” that are attached on the external cell wall63.
Cellulosomes use a scaffolding system that can link many different cellulose-binding
modules, as well as enzymatic subunits such as CAZymes60. Cellulosomes are used to
break down the polysaccharides in close proximity to any cell surface protein that take
up the shortened polysaccharides. Within the terminology of cellulosomes, a
“scaffoldin” unit with incorporated cellulose-binding modules interfaces with
exchangeable enzymatic subunits via a system of cohesin-dockerin units. The
scaffoldin unit is attached to an anchoring protein via a similar cohesin-dockerin
system. The anchoring protein is finally attached to the bacterial cell that encodes the
cellulosome. Cellulosomes are observed in distant bacterial classes such as Bacteroidia
and Clostridia, notably species Ruminococcus albus and Ruminococcus flavefaciens,
which are ubiquitous amongst ruminants4.

Physiology of the cattle rumen
For the purpose of converting dietary plant material into the requirements of the host
animal, there is a biological axis from the animal's feed, its rumen digesta, through the
rumen wall and finally the liver. Cattle utilize a series of auxiliary forestomachs to
allow pre-processing and fermentation of the plant fibers. These consist of the
reticulum, rumen, omasum and abomasum64. The reticulum and rumen together form
the reticulorumen64. From the esophagus, ingested feed is deposited into the reticulum
which is led by the reticulorumen fold into the rumen. The cattle host takes part in
breaking down the plant fibers by ruminating: Continuous regurgitation and chewing of
ruminal contents, increasing the exposed surface area of the plant fibers, and mixing to
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accelerate its decomposition. In this process, the reticulum plays a role in selecting the
digesta for rumination via the esophagus65. The rumen gains the most attention as it is
the largest of the forestomachs and harbors a high microbial diversity. It is
non-functional in newborn calves but subsequently develops to constitute 80% of the
total stomach volume66. Fermentation begins within weeks after birth, when a
composition of microorganisms encompassing archaea, bacteria, fungi and protozoa
has been established. Peristaltic movements work in conjunction with rumination to
process the digesta. The epithelial surface of the rumen wall is covered with papillae,
which are small millimeter-range protrusions that drastically increase the effective
surface area for absorption of fermentation products into the host67. The rumen wall
epithelium is able to directly take up VFAs68, which are reported to make up 70% of
the total energy budget of the host animal4. To facilitate the fermentation of supplied
nutrients, the rumen maintains a supportive environment for the microbial organisms
with a temperature of 39.4 ℃ and a pH ranging 5.5-7.066. The digesta proceeds into the
omasum which plays a role in removing water from the ingesta66. The omasum leads
further into the abomasum which is a glandular compartment secreting hydrochloric
acids. This environment together with enzymes hydrolyzes proteins and likely
inactivates microorganisms. The degraded digesta is retained for a few hours in the
abomasum before being transferred into the small intestine66 where metabolites and
proteins, especially, are assimilated68,69.

Link to the liver

The digesta-rumen wall axis for dietary nutrients continues further into the host via the
liver. All veins leading from the gastrointestinal tract, including the forestomachs,
make their way through the portal vein into the liver. As this blood is devoid of
oxygenated erythrocytes, the liver is supplied with oxygen from the hepatic arteries. As
the liver processes the metabolites carried from the portal vein, these are transported
via the central vein, which will eventually lead the metabolites to any organ within the
host animal. The liver modulates the blood composition by taking up and secreting
excess nutrients. For example glucose, which by the use of a bidirectional glucose
transporter, facilitates being stored as glycogen within the hepatocytes of the liver70.
Similarly, the liver responds to blood VFA levels by taking up VFAs, which the liver
can either oxidize for the production of ATP or use in the synthesis of lipids. In a
rumen-centric holo-omic context, the liver is important, as it represents the final stage
of processing in the host before the metabolites from the processed food become
available for the host animal.
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Multi-omics: From DNA to metabolites
Gaining a mechanistic understanding of how the vast diversity of rumen
microorganisms interact and collectively perform the digestive processes that are
essential to the host animals' health and nutrition, requires a suite of molecular tools
that span both traditional laboratory and in silico approaches. In particular,
“multi-omic” and “holo-omic” technologies require the analysis of many molecular
layers within the samples. Here follows a presentation of the motivation of
approaching individual layers with specific technologies, as well as discussing their
advantages and pitfalls in the context of their application.

Sequencing of DNA from complex samples

The cornerstone of multi-omics

Genomics is the cornerstone of any multi-omic study as information about genes
encoded within a living organism is stored and propagated evolutionarily as
double-stranded DNA. Transcribing gene potential, RNA polymerase produces
transcripts from the coding regions of the genomes. Curiously, these transcripts confer
the chemical ability, as structural ribozymes, to perform the translation of their own
kind into proteins. The ribozymes can act in diverse ways: As subunits of the ribosome
and even as the transfer vessels that put into place the amino acids corresponding to the
triplet nucleic acid codons encoded in the transcripts themselves. These amino acids
form peptide bonds that hold together the backbone that defines the possibilities for
folding and further post-translational modifications. Finally, a mature protein with any
imaginable biochemical function is formed. All of the aforementioned molecules are
important fields of study on their own and will be discussed below.

Isolation of DNA and other biomolecules

Before it is possible to investigate a given holobiont at multiple molecular layers that
tell the story of biological interactions and their metabolic consequences, the
corresponding biomolecules need to be collected. Environmental samples containing
microorganisms often carry diverse features such as enzymatic inhibitors, humic acids,
or biofilms (#1), produced as part of the metabolism that enables life of the organisms
themselves. Current sequencing and mass spectrometry technologies are highly
sensitive to contamination of such organic compounds, which means that in order to
sequence these biomolecules, they must first be isolated chemically. Inside living cells,
genomic DNA is archived in megabase-range chromosomes, which are potentially
wound into complex chromatin structures71. In order to access this DNA for
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sequencing, the cells must lysed to release the DNA without fragmenting it
excessively. This is because every time a DNA strand is needlessly fragmented, a
bioinformatic algorithm must later take the responsibility to stitch together those
fragments, which is not a trivial task72.

Bead beating represents one approach to expose the biochemical compounds of
complex samples: Violent shaking at several meters per second, with the addition of
glass beads that physically break apart the cells and any cell-enclosing capsules. This
frees the contained DNA from the individual organismal cells, but also potentially
physically fragments the DNA in the process. The tuning of this bead beating is
challenging because different lifeforms may use different cell-enclosing capsule
structures. One striking variability within bacteria lies in the composition and
physiology of their cytoplasmic membrane. Where monoderm bacteria lack an outer
membrane and compensate with a peptidoglycan capsule41, diderms have an outer
membrane forming a periplasmic space between it and the inner membrane73. Protozoa
are large and fragile, thus more susceptible to external stressors74. Fungi of the rumen
grow into the plant fibers that they degrade17. This means that to access the DNA of
such cells, the plant fibers must become disassembled first. This systematic difference
in DNA availability calls for multi-layered or fractional extraction techniques where
individual batches are performed to obtain a good representation of individual
taxonomic groups. Failure to take this into account will lead to a bias in the relative
abundances of these groups which is especially problematic in microbiome studies
because DNA of all lifeforms is desired concurrently. These issues are also relevant for
extraction of genetic and metabolic biomolecules of other omic layers (RNA, protein,
etc.) calling for taxonomically stratified extraction of these as well.

DNA sequencing

Several fundamentally different technologies are currently widespread for sequencing
of genomic DNA. One popular technology is sequencing-by-synthesis, where a
fluorescent terminating nucleotide is paired to a single-stranded DNA molecule. Before
this terminating nucleotide is swapped with an equivalent but non-fluorescent
replacement, its color is recorded. As the fluorophore has a specific color for the four
types of dNTP necessary for DNA synthesis, it allows reading the complementary
nucleic acids one by one. In Illumina’s implementation of sequencing-by-synthesis,
DNA is fragmented to a desired length. These fragments are attached on a flow cell
and grown into clusters with a polymerase chain reaction (PCR) bridge amplification
process. This allows the sequencing of both ends of the clusters leading to paired-end
reads. Typical sequencing on the Illumina Novaseq platform produces 80-6000 Gbp
reads with an N50 of 250 bp75 and an error rate of 0.1%76.
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Recently, long-read sequencing technologies have become more accessible and are
increasingly being applied to microbiome studies. PacBio is another implementation of
sequencing-by-synthesis, however, their process is described as single-molecule
real-time sequencing. Here a circularized DNA fragment is captured within
nanometer-range wells referred to as zero-mode wave-guides, where anchored DNA
polymerases perform the incorporation of fluorophores with dNTP-specific
wavelengths that allow recording of the incorporated complementary bases. Typical
sequencing on the PacBio HiFi platform produces 15 Gbp reads with an N50 of 15.4
kbp and an error rate of 99.93%77. This type of sequencing offers the low-error-rate
advantage of sequencing-by-synthesis but avoids the length limitation in Illumina’s
implementation.

A different sequencing concept altogether is nanopore single stranded DNA
sequencing. Here, DNA is passed through a pore of nanometric dimensions while a
circuit encircling the pore reads the fluctuations of current induced by the passing of a
single stranded DNA molecule. In Oxford Nanopore Technologies’ (ONT)
implementation, adaptors are ligated to DNA fragments. These adaptors bind to
DNA-unwinding enzymes that sit on top of nanopores which are embedded on a flow
cell. As the correlation between current flow and nucleotide is not straightforward, a
considerable part of the advancements in this technology is the development of better
basecalling algorithms which are currently based on recurrent neural networks78. A
typical sequencing run on the ONT flow cell R10.4 platform produces 14 Gbp reads
with an N50 of 5.6 kbp and an error rate of 98.11%77.

Metagenomics
Metagenomics is an approach where genomes of microorganisms are analyzed directly
from environmental samples, which is crucial for understanding their overall dynamics
in terms of abundances and genomic repertoires. Due to the enormous variation of
microorganisms, it is beneficial to reconstruct their genomes de novo without relying
on previous knowledge such as reference genomes. In de novo assembly, sequence
reads are overlapped by using various alignment algorithms and heuristics72. By
overlapping the reads it is possible to construct a graph that follows one or more paths
through the assembled reads. When one such contiguous path is identified, it is referred
to as a “contig”, which ideally represents a complete chromosome or plasmid, although
in practice such contigs are often fragmented. Contig fragmentation can be due to low
coverage when there are not enough reads to resolve a complex region, or when it
cannot be distinguished whether sequence variation comes from within or between
clonal populations. Short reads may not be able to resolve repetitive regions when the
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repetitive region is longer than the reads which is largely the reason why long reads
have recently become popular in metagenomics77.

The goal of genomic binning is to bin the assembled contigs into groups representing
individual species or strains. To achieve this, binning takes into account several
statistics like k-mer frequencies, differential abundance79 and in the future possibly
even species-specific DNA methylation patterns80. After successful binning, the bins
are referred to as MAGs. A common approach to quantify MAGs that have been
recovered from a metagenomic context is to map the original metagenome sequences
back onto these. This gives an indication of the relative abundances of the individual
microbial species or populations. As MAGs represent ideally complete genomes of a
specific species or population, it is in principle possible to characterize these
biologically with bioinformatic analysis. In practice, genes are annotated on the
genomes by searching gene databases for similar sequences. Following recent
developments in protein folding81,82, it is possible that in the future structure-based
search will play a large role in how genes are annotated, avoiding the alignment of
sequence representations83.

Genomes and genes of microorganisms form a central pillar in multi-omic studies. In
order to study RNA (i.e., transcriptomics) and proteins (i.e., proteomics), the only way
to definitively identify the origin of a specific transcript or protein is to map it to a
complete genome that has been taxonomically identified. A similar point goes for
metabolites, which can be correlated via pathways inferred from gene sets in the
genomes. This is why, in any metatranscriptomic, metaproteomic, or metabolomic
ecological study, metagenomics should be included and highly prioritized.

Metatranscriptomics
Transcriptomics enables measuring which genes are being expressed in a biological
system, whether investigating an individual cell or an ecological sample. The latter
case is referred to as metatranscriptomics. Transcriptomic analysis is achievable with
the sequencing of messenger RNAs (mRNA) which communicate genetic instructions
between DNA and protein. As mRNAs are usually short-lived relative to the proteins
they encode84,85, a qualitative interpretation of transcriptomics is that it gives a view
into what is being changed in the system, rather than what biologically active factors
(often proteins) are present. This is an interpretation of the often negligible correlation
between transcripts and proteins. (Meta)transcriptomics is usually sequenced with a
DNA sequencing platform, so the isolated RNAs are typically reverse transcribed into
complementary DNA (cDNA) at first. Within cells, ribosomes play a key role in
translating mRNA into protein, and they are numerous in microbial community
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samples. Since ribosomes themselves contain RNA, the default is that much of the
sequencing budget will be wasted on covering these redundant sequences. Therefore
ribosomal depletion plays a key role in transcriptomic workflows86.

The taxonomic domain-specific architecture of genes enables chemical selection of
specific clades. One such example is polyadenylation, which is part of mRNA
maturation in eukaryotes, where a tail of adenosine monophosphates is added to the
end of an mRNA. By chemically enriching for these while isolating mRNA, it is
possible to narrow down the sequencing coverage budget to a eukaryotic population, or
to deplete it for a non-eukaryotic focus87.

Metaproteomics
Proteins, particularly enzymes, are the major chemical drivers responsible for carrying
out metabolic processes within all biological systems82. Metaproteomics enables the
detection and quantification of proteins within complex environments, offering insights
into the ongoing biology88. Extraction of proteins may be susceptible to biases,
especially because many proteins are membrane-embedded or -bound, which may
necessitate special extraction techniques. In addition, the differences in cell
characteristics that exist across different taxonomic clades, for example the thickness
of the bacterial cell wall (Gram positive or negative), potentially affects amenability to
protein extraction techniques89, and even more so for fungi and protists present in the
sample.

A common approach to metaproteomics is bottom-up analysis, where the extracted
proteins are first cleaved into peptides using a protease (e.g. trypsin). The peptides,
typically a mix of hundred thousands, are then separated based on their hydrophobicity
using liquid chromatography and analyzed by mass spectrometry. Within this process,
the peptides transition from a liquid phase to the gas phase and acquire a charge (e.g.
using electrospray ionization) and can then be guided into the mass spectrometer.
Various types of mass analyzers exist that can be part of a mass spectrometer, for
example a Time-of-Flight (ToF) analyzer, where peptides are accelerated up until the
entrance of the ToF, followed by a movement through a so-called flight tube having a
defined length. The time that the peptide ions spend in this flight tube is proportional to
the mass to charge (m/z) ratio of each ion, which is recorded on a sensor, producing a
mass spectrum. The use of tandem mass analyzers allows the selection and
fragmentation of peptides (producing so called MS/MS spectra), and newer techniques
such as trapped ion mobility spectrometry (TIMS), which allows additional gas-phase
separation of ions, adding one more dimension to the m/z spectra, ultimately enable a
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deeper proteomics analysis, i.e., identifying more proteins from a complex sample such
as a metaproteome.

Unfortunately, a recorded spectrum can not be trivially mapped to a protein90. To
identify the protein of origin, the observed m/z spectra are matched with theoretical
spectra. These can be predicted in silico from a reference database of proteins expected
to largely cover the proteome of the sample in question. The design of this reference
database can have profound effects on the output, as missing proteins will not be
identifiable. A common issue when matching observed and predicted spectra is to
control the number of false matches. One solution, known as the target-decoy method,
is to reverse the sequences of the proteins in the reference database, and adjust the
matching threshold until a targeted false discovery rate (FDR) of these reverse
sequence spectra is achieved, e.g. 1%91.

Performing metaproteomics comes with some limitations. Because of the huge
diversity and dynamic found in ruminal samples, metaproteomics often contain a
multitude of taxa and many homologous proteins between species. This is further
complicated by initial protein extraction and the challenges of matching spectra.
Oftentimes, due to the high number of similar proteins between species,
metaproteomics identifies protein groups instead of unique singular proteins, and these
groups often consist of proteins from several species, making the inference of origin
difficult. A biological artifact of protein abundances is that they are typically skewed,
calling for transformation to approximate a symmetrical distribution which is necessary
to perform parametric statistical tests. Missing values can be a concern in
metaproteomics, especially when the metaproteomic data is scrutinized with statistical
methods that do not handle sparse data well. In a perfect world the number of sample
replicates could be increased to fill these missing values. A cheaper solution to the
missing-value problem is to use imputation, either to naively replace the missing
values with samples from a distribution around the detection level of the instrument or
to make sample-specific statistical models for each protein where information about
correlated proteins in other samples are used to infer a missing value92,93. Although the
mass-spectrometry-based method has limitations both regarding missing values and
indistinguishable protein groups, it still offers a unique view into the biological activity
of complex samples. Moreover, it is less prone to technical biases arising from sample
storage and molecular degradation and can capture biological information from all
domains of life simultaneously, which is important in transdomain ecosystems such as
the herbivore rumen.

Rumen-Centric Assembly of the Cattle Holobiont - Synopsis

33



Metabolomics
Even with perfect information on upstream molecular layers (DNA, transcripts, and
proteins), it is currently not possible to infer whether expressed and present pathways
are regulated to be active in time and space. Metabolomics offers insight into the
intermediates and products that follow from the active pathways within a biological
system. In a holobiont setting, a unique feature of metabolomics is that it allows testing
hypotheses on how metabolites transfer across the host-microbiome boundary. Overall,
several completely different technologies can be used: Untargeted metabolomics is
reminiscent of the procedure used in metaproteomics. Here a gas chromatography (GC)
or LC-MS/MS system separates and records spectra for extracted metabolites94. The
extraction method used has profound effects on the distribution of the extracted
metabolites, and the method should be selected based on the type of metabolites that
are most relevant for the greater picture. A reference library of known metabolites is
used to match spectra, which means that there will be similar issues of missing values
and redundancy, as discussed for metaproteomics. Despite these challenges,
mass-spectrometry-based metabolomics still represents a useful approach to investigate
complex interactions in a holobiont setting. In targeted metabolomics, only one or
more carefully selected metabolites are isolated and quantified by using highly specific
approaches. Typically, these are products that are relevant for the study system, for
instance plant fibers95, VFAs, and gasses96.

Holo-omics: Integrating layers across the host-microbiome
boundary
Collecting samples from the host and its microbiome and performing multi-omics
yields two separate datasets which must be integrated. In this context, holo-omics can
be considered a special case of multi-omics, and here it will be presented in context to
a holobiont application.

The general challenge that underpins holo-omics is that the datasets are large, which in
turn means that they contain a lot of background variation which is not relevant for
specific host-microbiome interactions. To make matters worse, as multi-omics on both
host and microbiome sides is in itself expensive, the sample sizes are usually low. This
leads to a problem where a few samples are used to infer the relationship between a
high number of factors. This can produce spurious results (false positives) if multiple
testing is not taken into account, but also hinder the identification of biological
relationships (false negatives) when too much regularization is applied.
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Several methods have been developed to counteract the discrepancy between small
sample size and large number of features. Dimensionality reduction is motivated by the
need to bring data with many independent features (i.e., dimensions) into a low number
of projections, each of which represents a weighted average of the original features. A
classic dimensionality reduction method is principal component analysis97 (PCA). This
method linearly projects the data into orthogonal projections. Multidimensional scaling
(classic) is reminiscent of PCA but allows the use of a dissimilarity matrix with
pairwise dissimilarities between samples instead of raw data97. Among other methods,
many complex algorithms exist97. To name a few, popular methods include t-distributed
stochastic neighbor embedding (t-SNE)98,99, and uniform manifold approximation and
projection100 (UMAP). These are powerful methods to project high-dimensional
manifolds in more manageable projections, but their complexity may challenge the
interpretation of biological relationships.

An alternative to dimensionality reduction is to use correlation networks and extract
connections within these that reflect the underlying biological interactions101. Omic
datasets may contain large numbers of genes, and many of these genes may be
expressed together when they perform a linked activity (e.g. encoding the genes for a
specific pathway). To make complex data more interpretable, it may be useful to
cluster these co-expressed genes together, and this is where correlation-network-based
methods can be useful. One example of a correlation-network-based framework is
weighted gene co-expression network analysis102 (WGCNA). Here, a series of
algorithms process normalized and filtered gene expression data from multiple samples
into clusters, each represented by idealized representative eigengenes. First, pairwise
correlations are calculated between all genes across the samples. These correlations are
soft-thresholded by raising them to a power that allows the distribution of distances to
follow a power law, resulting in the network to become scale-free103. This
soft-thresholding step also works as a means of filtering, as it amplifies stronger
correlations. On the soft-thresholded correlations, a network proximity measure is
applied, typically the topological overlap measure (TOM). The TOM takes into
account shared connections among correlated genes. On these measures, hierarchical
clustering, using average linkage clustering, constructs a binary tree of genes whose
branches can be cut to yield exclusive clusters. Finally, the genes inside these clusters
are represented with cluster eigengenes, which captures the expression pattern of that
cluster. The eigengenes are calculated as the first principal component (via PCA) of the
gene expression within their cluster. These eigengenes can then be correlated to
phenotypic traits of the original samples, or cross-correlated across the
host-microbiome boundary to locate potentially interacting clusters of genes between
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these two partners. WGCNA has been used to characterize roles of important genes in
many systems104,105.

Networks can also represent chemical rates within and between pathways of complex
biological systems106. By modeling these, it is possible to gain insight into how larger
systems interact upon stimuli. Metabolic networks can be represented by a
stoichiometric matrix with metabolites and reactions and a corresponding reaction rate
(flux) vector, and the product of these is the mass balances of the metabolites. This can
be used to model the complete pathways of entire genomes, thus forming genome-scale
metabolic models (GEM). Constraint based models (CBM) represent the most
powerful method for large-scale metabolic network reconstruction107. CBMs rely on
assumptions of steady-state which are justified by fast metabolism being relatively
invariant to regulation108. This simplifies the dynamics of the model, leaving a linear
system of equations that is computationally tractable. By using flux balance analysis
(FBA) it is then possible to solve for the flux vector by optimizing a certain objective109

(e.g. growth or the production of a specific metabolite). The assumption of steady-state
does impose some limitations on the use cases of metabolic models, but it still enables
valuable insights into the activities of metabolic networks.

The main motivation to use computational methods in multi- or holo-omics is to gain
insights into the interactions across the host-microbiome boundary, but also to
understand the marginal variation within either host or microbiome. Choices related to
the computational workflow, statistical approaches, and data visualization have
profound effects on the potential to gain biological insight. As holo-omics is an
emerging field there are many other methods and approaches that could be taken as
alternatives to the ones presented here.
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2. Aim of the thesis
The holobiont perspective entails that the microbiomes of animals should be taken into
account when considering the biology of the host110. While holobiont theory has existed
for decades111,112, technological advancements have created new insight into how
microorganisms fulfill important roles within the confinements of their host. Especially
in the gastrointestinal tract of bilaterians where microorganisms perform crucial
metabolic functions that enable the host to assimilate nutrients and energy from the
feed4,113 (Paper #3). It is known that external factors, such as diet, can affect the
composition of these microorganisms114, but fundamentally their response cannot be
predicted as a comprehensive understanding of their dynamics does not yet exist
(Paper #3). This problem is further exacerbated by the fact that abundant clades of
microbial species within these environments are still largely uncharacterized113.
Moreover, in humans it is indicated that more subtle factors, such as living conditions
and genotype of the host, can direct changes upon the composition of these
microbiomes115,116. This suggests direct interactions between the host and microbiome,
which means that the microbiome can possibly be used as a metabolic modulator of the
host. Access to this knowledge could fundamentally change understanding of holobiont
systems, and open a lasting potential to enhance production and health of many
animals, particularly those in agri- and aquaculture. To enable insight into these
abstract hypotheses, the rumen of cattle and adjacent host tissues, the rumen wall and
liver, were used as an exemplar holobiont system to build a high resolution dataset. The
cattle rumen is a large anaerobic chamber, where ingested plant fibers are degraded and
fermented by a multitude of microorganisms that have co-evolved for millions of years
with their cattle host. Since these microbial organisms are key to degradation, the host
depends on them to unlock the nutrition and energy from the plant fiber based diet
through the metabolic cascade that takes place4. The aim of this thesis is to assemble a
rumen-centric view of the cattle holobiont, to put together missing links that enable a
deeper characterization of both within-microbiome as well as microbiome-host
interactions. To accomplish this, the thesis will develop (Paper #1–2) and apply
multi-omic technologies on both sides of the host-microbiome boundary, and use
advanced methods to achieve an integrated holo-omic view (Paper #3) of the study
system (Paper #4). This will allow tracking of the metabolic cascade from CAZyme
directed plant fiber degradation, through production of fermentation end products and
to investigate how these are assimilated by and possibly affecting the biology of the
host.
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3. Main results & discussion
The papers outlined in this thesis cover the efforts taken to apply molecular omic
techniques to the biological context of the ruminant, which is an exemplar holobiont
system. The papers can be classified either as methodological development, or
biological discovery. The methodological developments are necessary as multi- and
holo-omics requires insight into many technical topics which have limitations in their
ways to present the underlying biological patterns. This is both in terms of analyzing
individual omics layers in the methods papers #1 and #2 but also to study the statistical
methods that allow integration of these layers across the host-microbiome boundary in
the review paper #3. The research paper #4 encompasses the application of the
methods that this thesis has collected and built along the way to showcase the
biological interpretations of the holobiont.

Paper #1 - Long-Read Metagenomics and CAZyme Discovery
In a microbiological environment where plant fibers play the main role as contributors
to the energy demands of the living organisms, CAZymes are key. Paper #1 outlines a
comprehensive workflow (Paper #1 fig. 1)—from complex samples to detection and
classification of the CAZyme genes in the microorganisms that encode them. To
understand how these microorganisms utilize the energy and carbon assimilated from
the plant fibers, their overall metabolic capacity must be determined. Thus, the review
describes the methodological steps to first obtain DNA from complex microbiome
samples and how to bring metagenomic reads from modern long-read DNA sequencing
technology into genomic representations, as well as how these can be binned and
dereplicated to finally construct MAGs. Arguing that the disposition and quality of
these MAGs can have profound effects on downstream analyses, the review describes
how to assess their quality. Several tools are discussed that can be used to annotate the
metabolic functions on their genomes and how their taxonomies can be identified.
Finally, by the use of specific publicly available scripts, the paper shows how the
acquired taxonomical and metabolic functional annotations can be visualized together
(Paper #1 fig. 2).

One of the major reflections from Paper #1 was that installing and applying all the
computational tools necessary for MAG annotation and CAZyme characterization is an
unnecessarily complicated process, which could be better automated. This led to the
idea that many publicly available tools could be integrated into a single user friendly
pipeline (Paper #2) that computes and presents the results in a way that enables direct
biological interpretation. Problems related to installation and runtime issues mean that
time that could be spent analyzing data and interpreting these to understand biology is
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instead spent on troubleshooting, which is analogous to technical issues experienced in
the wet lab. This led to the conceptualization and implementation of the CompareM2
software package (Paper #2), which includes core community adopted tools to analyze
MAGs and the functional potential of these on several qualitative and biological levels,
and makes it possible to gain biological insight without unnecessary overhead from the
user.

Paper #2 - CompareM2 is a genomes-to-report pipeline for
comparing microbial genomes
From the increasing number of MAGs being recovered from metagenomic studies, the
need arises for a complete and efficient pipeline that accepts MAGs and analyzes them
on many qualitative and biological levels: Quality control, functional annotation,
metabolic pathway analysis, phylogenetic analysis, and core- and pan-genome partition
characterization, including clustering of genes (Paper #2 fig. 2). This pipeline is useful
for analyzing large inventories of genomes and is designed to allow direct biological
interpretation. The pipeline consists of many open source tools which are integrated
using Snakemake—a framework for reproducible data analysis that allows efficient
parallel computation on multi-core and multi-node high-performance computers
(HPC), which is crucial for scalable performance on large datasets. Many of the
integrated tools use databases which the CompareM2 pipeline automatically
downloads and installs. Within this pipeline, a portable report document was
implemented to dynamically embed the main results of the pipeline, allowing for quick
access to the biological results and their interpretation. As CompareM2 is distributed
on Bioconda and uses a containerized Docker compatible Apptainer image that speeds
up installation, it avoids many of the issues common to installing large sets of
bioinformatic software packages.

To showcase the benefits of the CompareM2 implementation a quantitative comparison
was performed (Paper #2 fig. 1), analyzing two predominant taxonomic groups from
the metagenomic recovery of the digesta samples in the animal trial from #4. The
dataset was selected to reflect the ability of the pipeline to process both bacterial and
archaeal MAGs, namely bacteria Prevotella spp. of class Bacteroidia as well as archaea
Methanobrevibacter spp. of class Methanobacteria. As there is a lack of similar tools
within microbial ecology, the comparisons between CompareM2 and other tools relied
on tools developed for clinical microbiology. Contrasting CompareM2 against two
other popular, somewhat—but to the highest degree possible—comparable tools, it is
found that our implementation is 4.1–7.2 times faster (wall time) for analysis of the
Methanobrevibacter spp. MAGs and 3.1–7.8 times faster for the analysis of the
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Prevotella spp. MAGs (Paper #2 table 2) on a multi-core computer with a high
potential for computational parallel optimization. This supports the conclusion that
CompareM2 efficiently integrates the included bioinformatic tools. As speed is not the
only important factor for such pipelines the qualitative differences were also compared
(Paper #2 table 1), the results indicating that CompareM2 implementation is both easy
to install and use, and enables straightforward biological interpretations due to its
dynamic report. CompareM2 follows the open source culture, paving the way for user
contributions to adapt the tool for metagenomic analyses in the long term.

Holo-omic studies require thorough analysis of several molecular layers, which means
that for a holo-omic study to be feasible within a short time frame and with a limited
budget, streamlined methods must exist to efficiently analyze these individual layers.
In this context, CompareM2 represents a contribution to streamline one such aspect of
studying a holo-omic system, moving the field forwards in the larger quest of
analyzing host-microbiome interactions.

Paper #3 - Integrating host and microbiome biology using
holo-omics
Paper #3 presents a comprehensive review of the computational methods and
bioinformatic tools that are available to perform integrative holo-omics (Paper #3 fig.
1). In particular it explores the biological implications of holobionts, and showcases
how holo-omic methods can capture host-microbiome interactions. The review defines
holo-omics as a special case of multi-omics where both the host and an adjacent
microbiome are analyzed. This entails applying multi-omics methods (Paper #3 fig. 3)
but taking into account that completely different databases of genes and pathways must
be integrated across the host-microbiome boundary. Holo-omics can be considered a
big data problem where the datasets are too large to be analyzed using conventional
methods, contrasting biological observations directly by frequentist inference or
bayesian statistics. Instead the data must be filtered and reduced, or connected in a way
that allows underlying signals to percolate through and become available for statistical
tests, enabling biological interpretation. This problem is related to the curse of
dimensionality where a high number features explain the differences within a small
number of samples (Paper #3 fig. 2). Another challenge with these large datasets is
overfitting, where a model captures a signal that is merely spurious and does not bear
any biological relevance. First, Paper #3 presents an idealized holobiont system, gives
an overview of known host-microbiome effects, and describes qualitative differences
between known holobionts (Paper #3 table 2). It then goes on to present and contrast
the qualitative differences between state of the art statistical methods that can be
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broadly classified into dimensionality reduction or network analysis methods. The
main quality of these methods is their ability to define clusters of features with similar
presence or expression patterns across samples or over time.

Dimensionality reduction methods can be applied to individual layers which allows
identification of distinct clusters that can be compared across a host-microbiome
boundary. Paper #3 presents principal component analysis (PCA) as a ubiquitous
method that can be used to gain an overview of the overall variation within a single
layer. It can be refined with principal coordinates analysis (PCoA) that allows
transformation of the observations via any relevant distance method which can increase
the sensitivity towards certain taxonomic domain specific relationships, e.g. the
Bray-Curtis dissimilarity that quantifies differences in species composition between
samples. The advantage of these methods is that they create a compressed view of the
data by allowing to select only a few relevant orthogonal principal components. There
are also non-linear alternatives like t-distributed stochastic neighbor embedding
(t-SNE), non-metric multidimensional scaling (NMDS) and uniform manifold
approximation and projection (UMAP) which all allow the visualization of a
multidimensional manifold within a smaller number of dimensions. Other methods
within dimensionality reduction include non-negative matrix factorization (NMF) and
multiset correlation and factor analysis (MCFA) (Paper #3 fig. 4). NMF factorizes the
observed data into two matrices that ideally collectively have fewer total cells. An
interpretation of these resulting matrices is that one of them represents the
combinations of archetypes and the other represents the linear combinations of the
learned archetypes, which resemble the observed samples. This allows the method to
represent a large number of samples by bringing attention to the common combined
features.

Network methods are based on graphs that represent relationships between interacting
entities within a system. WGCNA builds a network of co-occurring genes or expressed
biochemical features. From the adjacencies of such a network it clusters these
compounds based on their topological overlap. Within each of these clusters,
eigengenes are defined. These capture the principal component which compresses the
data into a single orthogonal combination of the contained features. Finally these
cluster-representing eigengenes can be used to link metabolic functions across layers,
and may present more interpretative alternatives to other clustering methods. Another
network based method discussed in the review is transkingdom network analysis
(TkNA) which is designed to allow causal inference of master regulators within a
treatment-response experiment. It uses bipartite betweenness centrality, a common
graph theory metric, to identify nodes within the correlation network with a high flow
of information. Paper #3 also outlines integration tools based upon partial
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least-squares discriminant analysis (PLS-DA) and co-inertia analysis (CIA), and
presents latent Dirichlet allocation (LDA) as a network based method with a potential
to cluster relevant biological groups within holo-omic studies, which has yet to become
adopted by the community. Conclusively Paper #3 reveals that one of the major
limitations of statistical methods for holo-omics is the trivial problem of causal
inference. Inferring which side of the holo-omic boundary directs a factor, can prove
challenging. Overall, this methodological review offers a springboard for integrating
the holo-omic data derived from an animal experiment, which is showcased in the final
chapter of this thesis (Paper #4).

Paper #4 - Protozoal populations drive system-wide variation in the
rumen microbiome
The final paper of this thesis (#4) presents a biological research effort to bring together
all the methods and perspectives that have been reviewed, tested and developed in
papers #1–#3. To gain insight into a relevant holobiont model an experimental feedlot
trial was performed in collaboration with Scotland’s Rural College (SRUC). In total 80
cattle, 40 of an Aberdeen-Angus cross, and 40 of the breed Luing, were sampled for
their rumen digesta via esophageal tube collection at five time points over the duration
of the trial, and directly sampled from their rumen contents, rumen wall and liver tissue
upon slaughter. Before slaughter the animals were subjected to rigorous measurements
of various key performance traits as well as their methane yield, which had a range of
20.5–27.3 g/kg dry matter intake (Paper #4 fig. 1).

From the rumen digesta of all animals at slaughter, microbiome DNA was isolated and
taxonomically profiled using 16S rRNA gene amplicon sequencing analysis of archaea
and bacteria. Taking into account methane yield and breed, 24 animals were selected
for in-depth characterisation of host and microbiome samples. The 12 highest-emitting
and 12 lowest-emitting animals were chosen for multi-omic analysis of three sample
locations: host-liver and -rumen wall, as well as rumen digesta which represents the
microbiome. Rumen samples collected from these animals were analyzed with long
read sequencing using Oxford Nanopore Technologies’ R10.4 flow cell. For both host
tissue and digesta samples, short read sequencing was performed using the Illumina
Novaseq S4 platform. The long reads from the rumen metagenome were
hybrid-assembled with short reads before binning and dereplication, which resulted in
700 MAGs of at least medium21 quality distributed as 44 archaeal and 656 bacterial,
together representing 122 unique genera. All archaeal MAGs originated from
Methanobacteriaceae encompassing the genera Methanobrevibacter and
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Methanosphaera. Among bacterial MAGs, the most prevalent phyla were Bacillota and
Bacteroidota. Between these and other phyla the most prevalent genera were
Prevotella, Cryptobacteroides, Sodaliphilus and UBA4372. Among all of the MAGs,
most were of an uncharacterized species, and for 184 of the MAGs, species were not
assigned as there was no match in the genome taxonomy database117 (GTDB). If this is
not due to the incompleteness of these MAGs, it points to a general lack of
characterization of the archaeal and bacterial species of the rumen. The median
completeness and contamination of the MAGs as reported by CheckM2118 was
84.7% and 2.68%, respectively. All MAGs were annotated to predict open reading
frames to assign function, and were consolidated into a database used for mapping the
functional data generated from proteomics and transcriptomics. To this database, the
genes from eukaryotic sourced genomes (protozoal SAGs, fungal genomes, and a cattle
host reference genome)15,48 were also added. In total, this database consisted of 4.2 M
proteins with an average length of 426.8 amino acid residues sourced from a total of
777 archaeal, bacterial, protozoal, cattle host, and fungal genomes.

For functional analyses, RNA sequencing was performed on host tissues and the
microbiome to track the expression patterns of the vast array of populations that
constitute the cattle holobiont. The liver samples yielded 70.5 M reads per sample, on
average 91% of these mapped to the host genome. The rumen wall samples yielded
78.3 M reads per sample. On average only 17% of these mapped to the cattle host
genome and 57% mapped to the archaeal and bacterial genomes of the digesta. This
corresponds to the fact that remains of digesta were not rinsed off the epithelial surface
of the rumen wall samples before RNA extraction. The digesta samples yielded 112.8
M reads per sample, on average 2.3% mapped to archaea, 38.4% mapped to bacteria,
5.2% mapped to fungi and 53.9% mapped to protozoa. All sequencing efforts, 16S
rRNA gene amplicons, shotgun DNA, and RNA, were undertaken in collaboration with
DNASense ApS, Denmark.

The final translation of transcripts into protein was evaluated with metaproteomics of
the digesta samples and proteomics of the liver and rumen wall samples, all of which
were performed with liquid chromatography-tandem mass spectrometry (LC-MS/MS)
using the Bruker timsTOF Pro platform. The digesta, rumen wall and liver sample
measurements produced a range of 25k–40k scans leading to a range of 40k–81k
peptide-to-spectrum matches (PSM), which were mapped to the genomic database
using Fragpipe119. Of the protein groups recovered from the rumen digesta samples
collected during slaughter, 0.9% mapped to the host, 1.1% mapped to archaea, 47.2%
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mapped to bacteria, 0.4% mapped to fungi, and 50.5% mapped to protozoa. Since this
database was larger than the target design for the software, a custom workstation with
large quantities of RAM and swap storage was required to complete this computational
step. For further analysis of the proteomic and metaproteomic samples, network
analysis was undertaken upon the (meta)proteomic intensities. To circumvent
limitations imposed by missing values, these were imputed using missranger92. The
imputed data were analyzed with WGCNA to cluster detected proteins into modules102.
A large number of these modules were not correlated with any known phenotype
characteristic or sample grouping of the animals. Cross correlations of modules
between host and microbiome allowed the identification of co-expressed protein
groups across the host-microbiome axis.

To better understand how host and microbiome expression was contributing to the
greater phenotype of the system, untargeted metabolomics was performed using a
HPLC-MS/MS platform. This analysis identified the intensity of 591 unique
metabolites in the digesta, 197 in the rumen wall, and 326 in the liver samples. As
added layers, metabolites representative of pre- and post- digestion were measured
including plant fiber abundances using microarray polymer profiling95 (MAPP), in
collaboration with Newcastle University. This led to the identification of 43 unique
plant fiber and associated protein targets across the digesta samples. Finally, for
fermentation end-products, six volatile fatty acid targets: acetic acid, propionic acid,
iso- and butyric acid, iso- and valeric acid were collected.

Based on the extensive multilayered datasets to determine host-microbiome
interactions, dimensionality reduction techniques identified a well separated and
bistable clustering between two groups of animals (Paper #4 fig. 2a-d). Intriguingly
the pattern was not correlated with any phenotypic characteristics ascertained during
the trial, nor the genetic background (i.e., breed) of the animals. To reaffirm that these
patterns were not related to any technical effects e.g. handling of the animals or an
analytical sample batch, rigorous statistical tests were performed but did not reveal any
correlations that would suggest any known technical factor to be responsible.

Curiously, the bistable clustering pattern was ubiquitous across several omic layers that
were analyzed for the 24 animals across their rumen digesta, rumen wall and liver
samples. For the rumen digesta metatranscriptome, rumen wall metatranscriptome, and
digesta metaproteome, the first principal components unambiguously separated across
the two clusters. In other words, the two unidentified clusters were the largest
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contributor of variation in these layers. The congruence between the molecular layers
shows that the larger part of metabolism was likely affected by this compositional
difference. However, closer examination of metabolite data from the rumen digesta, the
rumen wall and liver revealed less impact with PC-driven variation only being detected
at PC4, PC3 and PC10, respectively. The lack of functional impact in the host was
furthermore supported by host expression data with limited cluster driven variation
being observed in the proteomes (PC4) and transcriptomes (PC3) of the rumen wall
epithelial samples as well as the transcriptome (PC5) and metaproteome (PC15) of the
liver.

Since the greatest variation for the clustering patterns was observed within the
microbiome, these layers were explored further at the domain level, which identified
two rumen community types (RCT) A and B that demonstrated large differences in
select populations of protozoa, bacteria and archaea (Paper #4 figures 2e and 3a).
Literature searches revealed that, for protozoa at least, the observed RCT-A and -B
were already partially described over half a century ago, when J. M. Eadie (1962,
Microbiology)36 observed with a light microscope that certain groups of protozoa
would never co-exist. Among these, community type A was enriched with
Ophryoscolecids (now Ophryoscolecinae15) specifically Polyplastron multivesiculatum
and other species under genera Ophryoscolex and Diploplastron (now Diplodiniinae).
Conversely, community “type B” was defined as being enriched with species of genus
Eudiplodinium and Epidinium, sometimes with the coexistence of ophryoscolecids.
Later, Williams & Coleman (1992, Springer)30 revisited these community types and
defined type A with the presence of Polyplastron multivesiculatum and possibly
Diploplastron affine, and type B with the presence of any Epidinium spp. In 2016,
Kittelmann et al.37 used the same scheme and made an updated definition of the types.
Iterative amendments to the definition of these community types raise attention to the
fact that the technology used for the quantification may impose differences in
perceived abundances. Our results differ from the historic definitions by suggesting
that the community types might not lead to complete exclusion of the less-abundant
protozoa, even though significant differences in abundances are observed between A
and B.

Considering the taxonomic profiles and the related functional implications of the
community types, RCT-B is significally enriched for subfamilies Diplodiniinae and
Ophryoscolecinae (Li 2022 ISME J) and is defined by species Diplodinium dentatum,
Epidinum cattanei, and Epidinium caudatum. The strongest representative is Epidinium
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cattanei (Paper #4 figure 4b) that has by far the highest abundance. Epidinia encode a
vast array of glycoside hydrolase CAZymes15,60 and are known to actively attach to
plant material30. This fits well into the observation of the plant fiber multiarray polymer
profiling (MAPP) that several hemicellulose fibers were less abundant in RCT-B. This
is possibly a response to faster degradation (Paper #4 fig. 5a) by these CAZymes,
suggesting that Epidinium spp. directs the overall glycan landscape. This may be
related to the strong metatranscriptomic presence of Prevotella spp. and Sodaliphilus
spp. (Paper #4 fig. 3) which are known fiber degraders4. In terms of fermentation end
products, butyrate was significantly more abundant in RCT-B (Paper #4 fig. 4c) which
may be linked with Epidinium spp. being observed to express several genes related to
butyrate-metabolism (Paper #4 fig. 4b).

In RCT-A the responsibilities for digestion are shared more broadly amongst protozoa
(Paper #4 fig. 4b) with significant enrichment for protozoal populations affiliated to
families Entodiniinae and Isotrichidae with genera Entodinium bursa, Entodinium
caudatum, Entodinium longinucleatum, Isotricha intestinalis, Isotricha YL-2021a; and
Polyplastron multivesiculatum (Paper #4 fig. 3c). MAGs taxonomically classified as
Methanobrevibacter spp. were identified as strong contributors of proteomic and
transcriptomic features that separate the RCTs (Paper #4 fig. 2e). These are known to
hitchhike on protozoa34, which could be linked to the conditional populations of
protozoa, as phylogenetically distinct populations of Methanobrevibacter spp. are
observed between the RCTs. Amongst bacteria, Faecousia spp., Merdiplasma spp., and
Acutalibacteraceae are prevalent in RCT-A (Paper #4 fig. 4a). These clades encode
parts of the Wood-Ljungdahl pathway which is a means of carbon assimilation by the
use of hydrogen as electron donor. Amongst these, specifically RUG762 of
Acutalibacteraceae is of interest as it represents the bacterial clade with the strongest
PC loadings in metaproteomics. Further annotation of RUG762 predicted that it
produces methionine via a cobalamin-dependent
5-methyltetrahydrofolate–homocysteine methyltransferase, rather than complete
reductive acetogenesis (Paper #4 fig. 5b). In terms of hydrogen sinks, reductive
acetogenesis is energetically unfavorable compared to methanogenesis, although it has
been described to be competitive during higher partial pressure of H2

13. Unfortunately,
this hypothesis cannot be tested within the context of this study as H2 was not
measured during sampling.

Seeing that the metabolic cascade of plant fiber degradation and production of VFAs
and amino acids are affected by the RCTs (Paper #4 fig. 4c), it seems reasonable to
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expect that the host animal is affected. However, as there are no significant correlations
between the RCTs and any key performance trait, it does not seem like the RCTs
impose any effects that strongly influence animal production (Paper #4 fig. S2). To
investigate deeper if the host was in any way affected, proteomic network analysis was
applied on the rumen digesta, rumen wall, and liver. Amongst the hundreds of protein
clusters identified by this method in microbiome and host, only two were identified in
the host, both with RCT-A (Paper #4 fig. S5). These protein clusters were identified in
the rumen wall and one was significantly enriched for cysteine and methionine
metabolism as defined by the KEGG pathway database. This suggests that the amino
acid production profile of RCT-A may have an effect in the host, but must be tested
more vigorously in future investigations.

Protozoa may affect the metabolic cascade of their RCT in several ways: Affecting the
glycan landscape through plant fiber degradation; preying on other microorganisms;
producing VFAs; and as a habitat for hitchhiking microorganisms. This means that they
could potentially be the main drivers of the RCTs. Although the protozoa of class
Litostomatea remain largely uncharacterized, this paper represents an advancement
towards better characterizing the RCTs and the activities that may be driving their
composition.
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4. Concluding remarks & future perspectives
The methanogenic biology of the rumen does not exist in an isolated system, but rather
plays a role in the global carbon cycle. Current practices of using ruminants,
specifically cattle, as production animals for beef and dairy products present challenges
for food security4,120 and safety for humanity in the long term, as they are a major
source of anthropogenic greenhouse gas emissions4,121,122. Similarly to the
developments between rumen microorganisms and the cattle, human and cattle have a
history of coevolution: The concept of cattle breeding is deeply rooted in some human
cultural identities as evidenced by the genomically encoded persistence of the lactase
gene, which has been shown to have entered the human lineage within the last
~2,000–20,000 years123. While in many countries reduction in consumption of meat
and dairy is seen as a strategy to reduce anthropogenic emissions from ruminants,
animal husbandry has deep cultural and socioeconomic ties in many regions of the
world. This suggests that stopping the use of cattle as production animals is not a
realistic means to mitigate methane emissions in a historic context. Rather, part of the
solution to climate challenges may be to better understand how the production of
methane in the rumen can be mitigated by directing the fermentative pathways to
alternative energy-yielding metabolites of benefit to the animal.

To be able to succeed in modulating the metabolic cascade of the rumen it is necessary
to build a better understanding of how the host and its microbiome work together to
drive assimilation of nutrients and energy from cattle’s plant fiber based diet. This
thesis takes several steps ahead on this path by developing tools for scalable
characterization of MAGs from complex environments, by formalizing methods that
can be used for integrating multi-omic molecular features across the host-microbiome
boundary, and lastly by using the acquired tools to dive further into the biology around
the cattle rumen.

The first paper (#1) described how DNA can be extracted from complex samples and
analyzed to reconstruct MAGs which can be characterized in terms of their metabolic
potential. One important consideration that was not included is that when extracting
such biomolecules (for example DNA, RNA, protein, and metabolites), it should be
done with regard to the disposition of the cell wall of the microorganisms being
investigated. For example, bacteria can have a thick layer of peptidoglycan, protozoa
can be fragile, and fungi may grow into and embed themselves into the plant fibers. In
order to obtain a representative amount of biomolecules from each of these taxonomic
domains, ideally fractional or differential extractions should be performed to achieve
efficient lysis of the cells without adverse effects, i.e., DNA fragmentation. This should
be investigated deeper, and taken up as a common practice in microbiome analyses to
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enable painting a more representative picture of the diverse microorganisms of the
rumen, and similar environments.

One of the major outcomes from Paper #1 was the accessibility of high throughput
genome annotation that is a fundamental feature of any multi/holo-omics workflow. In
this context, Paper #2 settled the need for a generalized pipeline for quick but
thorough analysis of MAGs. This is necessary for large scale characterization of
genomes from complex environments and empowers the database used for mapping of
proteomic and transcriptomic features in any multi-omic experiment. As this pipeline is
designed with modularity in mind, it will be updated to reflect the technological
evolution and incorporate new tools, to ensure its adoption by the larger scientific
community within meta-omics.

As part of the multi- and holo-omic strategies that were explored throughout this thesis,
several technical challenges arose that ideally require in-depth future investigations.
One particular example was encountered with our use of metaproteomics. From a
biological perspective, protein abundances can be seen as offering the most relevant
insight into the presence of individual microorganisms and the metabolic functions
they are performing in their natural habitat. However, current LC-MS/MS-based
metaproteomics techniques have inherent challenges with missing values and in
distinguishing similar proteins. Furthermore, severe technical problems were
encountered when running the software responsible for performing the
peptide-to-spectrum matches. This was largely due to a mismatch between the design
of the proteomic software and the size of our proteomic database. This anecdote will
not stand alone as the technological evolution of sequencing techniques leads to the
recovery of even more MAGs representing species that are currently uncharacterized.
This will enlarge the proteomic databases used in metaproteomics and further
exacerbate the computational issues encountered in projects with a similar approach.
This highlights the need for continued technological development towards
metaproteomics, to avoid saturation and to enable insight into datasets with ever higher
resolution.

Beyond individual omic layers, multi- and holo-omics necessitates methods that can
handle multiple complex data types. Paper #3 formalized the holobiont and its
possible host-microbiome interactions, and characterized and juxtaposed powerful
methods for analyzing data representing them. However, one conclusion from this
review was that a methodological gold standard for holo-omic integration lies further
in the future. Holo-omics is a young field, and it can be expected that an ideal standard
for analysis will come together when the appropriate multi-omic technologies evolve
and enable construction of higher resolution host-microbiome datasets for critical
assessment of the holobiont concept. Ideally, such a methodological standard is fully
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parameterized and able to handle diverse holo-omic experimental setups to enable a
quick turnover of biological hypotheses.

To showcase the methodological approaches that were developed and explored in this
thesis, an animal trial was designed and analyzed in depth. Paper #4 exemplified
integrating the molecular layers of host and microbiome to gain a deeper understanding
of the cattle rumen holobiont. This led to the detection of two rumen community types,
labeled RCT-A and RCT-B. The observations of RCT-A and -B were unexpected, and
led us on a journey to characterize the organismal factors and the metabolic cascade
that defines their existence. A future direction will be to identify the origin and
determining factors that enabled the RCTs to establish and persist within individual
cattle hosts. As the RCTs are seemingly not linked to the breed of the cattle, it can be
deduced that the host genotype likely plays no role in their definition. That the RCTs
have little to no effect on the host may speak to the plasticity of the rumen system
overall. Maybe, because the microorganisms on the two sides of RCT-A and -B are
functionally redundant and able to fulfill the same functions at large. The temporal
analysis indicated that the RCTs were stable over time. A possible explanation of this
could be that the cattle enlisted, in this trial, were seeded with their RCT prior to
commencement, which could possibly be directed by mother-offspring contact. This
hypothesis could be tested by following offspring from birth until maturity while
correlating the RCT between mother and offspring. An alternative hypothesis
explaining the RCT-stability over time is that certain predation patterns of the protozoa
drive their apparent exclusivity. In the case that predatory protozoa target specific prey,
they may be able to reinforce a distinct community profile. This hypothesis could be
tested by isolating and inoculating the predatory marker species into cattle with
alternate RCTs. The importance of further characterizing the RCTs can be illustrated
with reference to the large-scale industrial development and investment into feed
additives for cattle production, e.g. bromoform and 3-nitrooxypropanol. In the case that
there is any interaction effect between a feed additive and an RCT, further
characterization is key to obtaining an efficient response.

This thesis described the use of holo-omics, culminating in a study where the cattle
rumen was used as an example system. The key finding, namely the RCTs, poses
several distinct challenges for further analysis. First and foremost is a continued push
to further characterize the RCTs beyond the limited boundaries of the trial analyzed
herein—to understand their origin and to comprehensively test hypotheses for the
metabolic cascades they impose. The second challenge is to look deeper into
uncharacterized host-microbiome interactions, taking into account and adjusting for
background effects imposed by the RCTs and other within-microbiome variation. In the
greater context of holo-omics methodology development, this work brings forward

C. M. Kobel | PhD thesis 2025

50



new queries arising from the within-microbiome variation that was encountered in the
ruminant work. Namely, does it stand in the way of elucidating unrelated
host-microbiome effects? For example, by imposing artifacts on host-microbiome
signals—it should finally be considered whether the cattle rumen with its enigmatic
microbiome is an appropriate model for holo-omic methodological development. One
final conclusion of this PhD is that current bottlenecks for gaining better insights into
holobionts is the lack of abstract annotations of pathways, as well as the bioinformatic
pipelines to quickly test biological hypotheses from complex datasets.
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Chapter 19

Long-Read Metagenomics and CAZyme Discovery

Alessandra Ferrillo, Carl Mathias Kobel, Arturo Vera-Ponce de León,
Sabina Leanti La Rosa, Benoit Josef Kunath, Phillip Byron Pope,
and Live Heldal Hagen

Abstract

Microorganisms play a primary role in regulating biogeochemical cycles and are a valuable source of
enzymes that have biotechnological applications, such as carbohydrate-active enzymes (CAZymes). How-
ever, the inability to culture the majority of microorganisms that exist in natural ecosystems restricts access
to potentially novel bacteria and beneficial CAZymes. While commonplace molecular-based culture-inde-
pendent methods such as metagenomics enable researchers to study microbial communities directly from
environmental samples, recent progress in long-read sequencing technologies are advancing the field. We
outline key methodological stages that are required as well as describe specific protocols that are currently
used for long-read metagenomic projects dedicated to CAZyme discovery.

Key words Long-read metagenomics, Carbohydrate-active enzymes, Microbial communities, Assem-
bly, Binning

1 Introduction

The continuing initiative to find novel carbohydrate-active
enzymes (CAZymes) derives from societal and industrial interest
in utilizing plant biomass as a substrate for “bio-products” such as
fuels, chemicals, and plastics. Cellulose, the most abundant form of
carbon on earth, is notoriously difficult to deconstruct using cur-
rently available enzyme technology, whereas a variety of digestive
ecosystems, such as gastrointestinal tract of herbivores [1] or ter-
mites guts [2, 3], are able to efficiently utilize lignocellulolytic
biomass. This functional capacity is controlled by microorganisms
that are difficult to isolate and cultivate, which restricts direct access
to their genetic and enzymatic machinery. Cultivability “bottle-
necks” can be addressed by applying culture-independent methods,
such as metagenomics, whereby total DNA is directly extracted,

D. Wade Abbott and Wesley F. Zandberg (eds.), Carbohydrate-Protein Interactions: Methods and Protocols,
Methods in Molecular Biology, vol. 2657, https://doi.org/10.1007/978-1-0716-3151-5_19,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2023
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“shotgun-sequenced,” and analyzed from the microbial sample
without any need for prior isolation.

254 Alessandra Ferrillo et al.

Shotgun metagenomics can theoretically generate sequences
(reads) from all of the genomes present in the sample, collectively
referred to as the metagenome. Recent progress in bioinformatics
permits the complete reconstruction of a significant fraction of
constituent genomes within a sample, otherwise known as
metagenome-assembled genomes (MAGs). These methods have
already shown their potential to find new non-cultivable polysac-
charide-degrading bacteria and fungi [4–6], as well as interpreta-
tions of synergistic relationships between uncultured phylotypes in
a cellulolytic community [7, 8]. Excitingly, long-read DNA
sequencing technologies from Pacific Biosciences (PacBio) and
Oxford Nanopore are creating new opportunities to improve the
quality of MAGs, including their reconstruction into a single circu-
lar contig [9–11]. Despite the inherent benefits, the use of shotgun
metagenomics also comes with several defined challenges. The
diversity of microbial species in digestive ecosystems combined
with the immense data output of the high-throughput sequencing
(HTS) platforms produces terabytes of data that needs to be anno-
tated before it can be meaningfully interpreted. Today, a wide
variety of different HTS platforms and bioinformatic packages
tailor-made for metagenome projects are available to scientists.
Therefore, careful considerations of available resources and techni-
cal challenges that are relevant for a particular sample are still
required. It is the aim of this chapter to describe the application
of the biological and bioinformatic methods that are currently
available for long-read metagenomics in this rapidly developing
field and to provide exemplar step-by-step protocols to follow for
samples originating from plant biomass-degrading ecosystems
(Fig. 1).

2 Materials

2.1 DNA Extraction,
Alternative A:
Commercial Kits

1. DNeasy PowerSoil Pro kit (QIAGEN, Germany).

2. Short Read Eliminator (SRE) Kit (PacBio, USA).

3. Optional (see Subheading “DNA extraction Alternative A –
rapid DNA extraction with short-read elimination”; “Short-
Read Elimination”): ProNex® Size-Selective Purification Sys-
tem (Promega, USA).

2.2 DNA Extraction,
Alternative B: Buffers

1. Dissociation buffer: 0.1% Tween 80, 1% methanol, and 1%
tertiary butanol (v/v) in Milli-Q water. Adjust to pH 2 by
adding HCl.

2. Cell wash buffer: 10 mM Tris–HC1 (pH 8.0) and 1 M NaCl,
sterilized by autoclaving.
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Sample collection

Experimental design

Cell dissociation
(Subheading 3.3.1)

DNA extraction
(Subheading 3.3.2)

DNA sequencing

Binning and dereplication 
(Subheading 3.5.1)

(Subheading 3.7.2)
(Subheading 3.7.3)

Genes of interest
Biochemical 

characterization

Functional annotation of
CAZymes and pathway 

reconstruction
(Subheading 3.7.1)

16S rRNA gene
amplicon analysis

Metadata

Metaproteomics and
Metatranscriptomics

Assembly 
of short and long-reads

(Subheading 3.4.1)
(Subheading 3.4.2)
(Subheading 3.4.3)

(Subheading 3.5.2)

Fig. 1 Flow diagram of a typical metagenomic project dedicated to CAZyme discovery. Workflow represented
by solid lines is discussed with specific protocols included (red text). Dotted lines indicate additional
complementary techniques that are not presented in detail within this chapter

3. RBB + C buffer: 500 mM NaCl, 50 mM Tris–HCl, 50 mM
EDTA, and 4% SDS.

4. NaCl/CTAB buffer: 4.1 g NaCl and 10 g cetyltrimethylam-
monium bromide (CTAB), dissolved in 80 mL of Milli-Q
water. Heat to 68 °C to enhance the dissolving process. Add
Milli-Q water to a final volume of 100 mL.

5. TE buffer: 10 mM Tris–HCl (pH 7.6) and 1 mM EDTA
(pH 8.0).

6. 5M NaCl: 29.2 g NaCl, dissolved in 100 mL Milli-Q water.
Sterilize by autoclaving.

7. 1M Tris–HCl: 121.1 g Tris-base, dissolved in 800 mL Milli-Q
water. Adjust to pH 7.6 with HCl. AddMilli-Q water until to a
final volume of 1.0 L.
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8. 4% SDS: 4 g SDS in 96 mL Milli-Q water. Heat to 68 °C to
enhance the dissolving process. Adjust to pH 7.4. Add Milli-Q
water to final volume of 100 mL.

9. EDTA solution: 186.12 g EDTA∙Na2∙2H2O (molecular weight
372.24), dissolved in 800 mL Milli-Q water. While stirring
vigorously on a magnetic stirrer, add NaOH pellet or 10 N
NaOH to adjust the solution pH 8.0. Adjust the volume to 1 L
with deionized/Milli-Q water. Sterilize by autoclaving.

2.3 Computational
Software

1. NanoPlot v1.20.0 (https://github.com/wdecoster/
NanoPlot).

2. Fastp v0.23.1 (https://github.com/OpenGene/fastp).

3. Filtlong v0.2.1 (https://github.com/rrwick/Filtlong).

4. MEGAHIT v1.2.9 (https://github.com/voutcn/megahit).

5. Flye v2.9 (https://github.com/fenderglass/Flye).

6. Minimap2 v2.17 (https://github.com/lh3/minimap2).

7. BWA-MEM2 (https://github.com/bwa-mem2/bwa-mem2).

8. Racon v1.4.20 (https://github.com/isovic/racon).

9. Medaka v1.6.1 (https://github.com/nanoporetech/medaka).

10. Polypolish v0.5.0 (https://github.com/rrwick/Polypolish).

11. MetaBAT2 v2.12 (https://bitbucket.org/berkeleylab/
metabat).

12. dRep v3.2.2 (https://github.com/MrOlm/drep).

13. CheckM2 v0.1.3 (https://github.com/chklovski/CheckM2).

14. GTDB-Tk v2.1.0 (https://github.com/Ecogenomics/
GTDBTk).

15. DRAM v1.2.4 (https://github.com/WrightonLabCSU/
DRAM).

16. dbCAN (https://bcb.unl.edu/dbCAN2/index.php).

17. PhyloPhlAn v3.0.2 (https://github.com/biobakery/
phylophlan).

18. R v4.2.1 (https://www.r-project.org/).

3 Methods

3.1 Strategy
Development

For metagenomic projects dedicated to CAZyme discovery, the
goal is relatively straightforward: obtain large contiguous DNA
fragments that are coupled with the fewest possible misassemblies
so that as many complete genes and operons are available for
screening. Therefore, understanding which choice of sequencing
platform and the amount of sequencing (sequencing depth)
required to achieve a superior quality dataset is crucial when

Long-Read Metagenomics and CAZyme Discovery - Paper #1

67



designing the project [12]. Different sequencing technologies have
vastly different read lengths and base pair (bp) yield and require
different amounts of sample DNA and downstream bioinformatic
analyses (see review [13]). The suitability of a specific type of HTS
data to a given sample largely depends on the community structural
complexity. Typically, shotgun sequencing results in deep coverage
of dominant species and less reads from lower abundant species. To
accommodate this discrepancy and gain greater access to the rarer
community members, the sequencing effort must be increased;
however, computational limitations (e.g., RAM, CPUs, storage)
need to be considered. Therefore, an initial evaluation of the com-
munity structure using 16S rRNA gene amplicon analysis [14, 15]
is recommended to help determine the complexity as well as the
choice of HTS platform and the depth of sequencing to obtain the
dataset necessary for CAZyme gene searches.
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The taxonomic composition determined by 16S rRNA gene
amplicon analysis can further assist in choosing metagenomes to
assemble together (co-assembly), especially in circumstances where
the sequencing depths need to be improved while keeping the
computational demands attainable [16]. Eukaryotic DNA, such as
from host, plant, or eukaryotic microorganisms (fungi, protozoa),
can also affect the efficiency of sequencing and downstream analysis
of the prokaryotic population. For example, ciliated protozoa can
represent a large portion of the microbial biomass in the rumen
ecosystem, and recent analysis in our lab indicates that the presence
of their DNA potentially has a negative influence on the overall
microbiome assembly. Thus, while ciliated protozoa are important
contributors to the CAZy repertoire in the rumen [17], removal of
eukaryotic “contamination” might enhance the recovery of pro-
karyote high-quality (HQ) MAGs.

3.2 Sample
Collection and
Metadata

The collection and processing of environmental samples is the first
stage when planning a metagenomic project. Key considerations
include the number of samples needed to adequately view the
temporal dynamics or variability among the ecosystem as well as
fulfill operating requirements of downstream bioinformatic soft-
ware that require multiple samples (see Subheading 3.5). Moreover,
other “omic” techniques, such as metaproteomics and metatran-
scriptomics, can be used to efficiently complement the metage-
nomic analysis and its outcomes (see Fig. 1 and Subheading 3.8).
Extra subsamples can be easily stored in standardized ways in order
to be analyzed later if required. In addition to the number of
samples, the accompaniment of “metadata” can greatly enhance
the ability to interpret the sequence data and particularly for com-
parative, spatial, or temporal series analysis. Metadata should
appropriately describe the samples and the methods used. A suite
of standard languages, called the minimum information about any
(×) sequence checklists (MIxS) [18], provides format for recording
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environmental and experimental data. These standards include
MIGS (minimum information about a genome sequence), MIMS
(minimum information about a metagenome sequence), and
MIMAG (minimum information about a metagenome-assembled
genome) checklists [19, 20]. What is recorded depends on where
the samples come from but usually includes, among others, tem-
perature, pH, substrate, sample handling, DNA extraction method,
sequencing technology, and the bioinformatic methods used.
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3.3 Cell Dissociation
and DNA Extraction
Methods

When looking for CAZymes, samples vary greatly from different
environments, such as guts, soils, excrements, sediments, bioreac-
tors, and other plant-associated biomass. These habitats present
different characteristics, such as the presence of host cells [2, 21],
microbial eukaryotes [22], enzymatic inhibitors (such as humic
acids) [23], or biofilms [24], and therefore require specific proto-
cols. Samples of plant biomass-degrading communities often
require an additional processing step to remove microbial cells
that are attached to plant fibers [24]. In Subheading 3.3.1, w
describe a high-yield method that enables the dissociation of the
microbial cells from the substrate and the recovery of the full
sample’s diversity. The resulting cell biomass generated from this
dissociation protocol is suitable for both kit-based DNA extractions
[25, 26] as well as Mamur’s derived protocols [24].

DNA extraction is an important part of the experimental design
since it can have a major impact on the subsequent NGS platform
and downstream bioinformatic analyses that are used. DNA extrac-
tion and purification is still considered a bottleneck for metage-
nomic analyses, compounded by the fact that there is not one
common method that fits every environmental sample. Indeed,
the quality and the quantity of DNA required vary from a sequenc-
ing technology to another and may influence the choice of the
DNA extraction method.

Long-read technology platforms (Oxford Nanopore Technol-
ogy (ONT), PacBio) require high concentrations of
non-fragmented high-molecular-weight (HMW) DNA and the
efficiency of the sequencing is heavily influenced by the DNA
integrity. While accommodating high-throughput sample
handling, commercial kits usually result in fragmentation of the
DNA molecules during the mechanical lysis of the cells (see Sub-
heading 3.3.2). These instances will require gentle non-invasive
methods, or to use additional size selection kits to remove short
DNA fragments. In instances where a low cell biomass prohibits
high nanogram or microgram quantities of DNA, whole genome
amplification of starting material can also be necessary. As with any
amplification method, sequence biases can occur [27, 28] and their
impacts depend on the amount of starting material and the
required number of amplification rounds to produce sufficient
amount of DNA for sequencing.
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3.3.1 Cell Dissociation

for Plant-Associated

Biomass Samples

The sample preparation is initially dependent on whether the sam-
ple has been stored as biomass sample at -80 °C or in 1/5 volume
of phenol/ethanol (5%/95%) pH 8.0 at 4 °C (see Note 1).

1. Transfer 1.0 g of biomass or 1.5 mL sample and phenol/
ethanol mix with a wide-bore pipette to a 2 mL tube.

2. Centrifuge at 14,000× g at room temperature for 2 min.

3. Discard supernatant and resuspend biomass in 500 μL of dis-
sociation buffer by vortexing for 30 s.

4. Centrifuge at 100× g for 20 s at room temperature and transfer
cell-containing supernatant to a new cell-collection tube and
centrifuge at 14,000× g for 5 min at room temperature. Dis-
card cell-free supernatant.

5. Repeat dissociation buffer steps 3 and 4 two to three more
times, transferring each cell-containing supernatant in the same
cell-collection tube (see Note 2).

6. Resuspend the concentrated cell pellet in 1 mL of cell wash
buffer.

7. Centrifuge at 100× g for 20 s at room temperature and transfer
cell-containing supernatant to a new tube. Centrifuge at
14,000× g for 5 min at room temperature. Discard cell-free
supernatant.

8. Resuspend cell pellet in 1 mL of cell wash buffer.

9. Centrifuge at 14,000× g for 2 min at room temperature and
discard supernatant. Wet cell pellet should weigh ~200 mg (see
Note 3).

10. Proceed to DNA extraction.

3.3.2 DNA Extraction 1. Spin a PowerBead Pro Tube briefly to ensure that the beads
have settled at the bottom. Add up to 250 mg of a biomass
sample (or the cell pellet retrieved in Subheading 3.3.1) and
800 μL of Solution CD1 (see Note 4). Vortex briefly to mix or
invert several times.

DNA Extraction Alternative

A: Rapid DNA Extraction

with Short-Read

Elimination 2. Secure the PowerBead Pro Tube horizontally on a vortex
adapter for 1.5–2 mL tubes and vortex at maximum speed for
10 min (see Note 5).DNA Extraction Using

DNeasy® PowerSoil® Pro

Kit
3. Centrifuge the PowerBead Pro Tube at 15,000× g for 1 min

and transfer the supernatant (500–600 μL) to a clean 2 mL
microcentrifuge tube. In this step, the supernatant may still
contain some plant fiber particles.

Protocol Modified from

DNeasy PowerSoil Pro Kit

Handbook (03/2021)

4. Add 200 μL of Solution CD2 and vortex for 5 s. Centrifuge at
15,000× g for 1 min, and, while avoiding the pellet, transfer up
to 600 μL of the supernatant to a clean 2 mL
microcentrifuge tube.
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5. Add 600 μL of Solution CD3 and vortex for 5 s. The solution
CD3 together with the silica membrane in the MB Spin Col-
umn will precipitate contaminants, leaving only the DNA
bound on the membrane.

6. Load 650 μL of the lysate onto an MB Spin Column and
centrifuge at 15,000× g for 1 min.

7. Discard the flow-through and repeat step 6 to ensure that all
the lysate has passed through the MB Spin Column.

8. Carefully place the MB Spin Column into a clean 2 mL
collection tube.

CAUTION Avoid splashing any flow-through onto the
MB Spin Column, as the solution likely contains contaminants.

9. Add 500 μL of Solution EA to the MB Spin Column. Centri-
fuge at 15,000× g for 1 min.

10. Discard the flow-through and place the MB Spin Column back
into the same 2 mL collection tube.

11. Add 500 μL of Solution C5 to the MB Spin Column. Centri-
fuge at 15,000× g for 1 min.

12. Discard the flow-through and place the MB Spin Column into
a new 2 mL collection tube.

13. Centrifuge at up to 16,000× g for 2 min. Carefully place the
MB Spin Column into a new 1.5 mL elution tube.

14. Add 50–100 μL of Solution C6 to the center of the white filter
membrane, make sure to not touch it, and pay attention that
the entire membrane is wet. Centrifuge at 15,000× g for 1 min
to elute the DNA. Discard the MB Spin Column and store the
eluted DNA at 4 °C for days or frozen for longer term.

Short-Read Elimination 1. Prepare fresh 70% EtOH wash buffer and store at room
temperature.

Protocol Modified from

Short Read Eliminator Kit

Family-Handbook v2.0 (07/

19), Size Selection Protocol

for SRE SX

2. Adjust the extracted DNA sample to a total volume of 60 μL
and concentration between 25 and 150 ng μL-1 (see Note 6).
The DNA sample can be diluted in Buffer EB.

3. Add 60 μL of Buffer SRE or Buffer SRE XL to the sample. Mix
thoroughly by gently tapping the tube or by gently pipetting
up and down using wide-bore tips.

4. Centrifuge at 10,000× g for 30 min at room temperature.
Carefully remove the supernatant (see Note 7).

5. Add 200 μL of the 70% EtOH wash solution to the tube and
centrifuge at 10,000× g for 2 min at room temperature.

6. Carefully remove the wash solution from tube without disturb-
ing the DNA pellet (see Note 7).

7. Repeat steps 5 and 6.
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8. Add 50–100 μL of Buffer EB to the tube and incubate at room
temperature for 20 min (see Note 8).

9. After incubation, gently tap the tube to ensure that the DNA is
properly resuspended and mixed, and analyze the quantity and
purity of the DNA by Qubit and NanoDrop, respectively. The
range of depletion can be estimated using agarose gel electro-
phoresis or automated electrophoresis (e.g., TapeStation sys-
tem, Agilent).

10. Optional: During short-read elimination, loss of DNA is
expected. If the final concentration falls below the required
concentration for sequencing, the DNA yield can be increased
by re-precipitation in a smaller elution volume. Alternatively,
magnetic bead-based systems, such as the ProNex® Size-
Selective Purification System can be used to concentrate the
yield while also selecting for DNA of a desired length.

DNA Extraction Alternative

B: HMW DNA

1. Resuspend cell pellet (fromSubheading 3.3.1) in 1mLRBB+C
buffer.

2. Incubate for 20 min at 70 °C, mix tube by inversion every
5 min.HMW DNA Extraction

3. Split into 2 × 1.5 mL tubes and add NaCl to 0.7 M and 1:10
volume of CTAB buffer.

4. Heat at 70 °C for 10 min.

5. Add an equal volume of chloroform. Mix well and centrifuge at
14,000× g for 15 min at room temperature. Transfer aqueous
phase to new tube (see Note 9).

6. Add equal volume of phenol/chloroform/isoamylalcohol (25:
24:1). Mix well, centrifuge at 14,000× g for 15 min at room
temperature, and transfer aqueous phase to new tube.
CAUTION Phenol, chloroform, and isoamylalcohol are
harmful. Handle using appropriate safety equipment and
measures.

7. Add 2 × vol of 95% ethanol and mix gently until DNA spools.
Use a sterile loop to transfer the DNA to a tube containing
200 μL 70% ethanol (see Note 10). CAUTION Ethanol is
flammable. Handle using appropriate safety equipment and
measures.

8. Centrifuge at 14,000× g for 2 min at room temperature and
carefully discard supernatant. Briefly air-dry the pellet.

9. Resuspend in 20–30 μL TE buffer (pH 8.0) and incubate at
room temperature for 30–60 min to allow DNA to dissolve,
before measuring the DNA concentration (see Note 11).

10. Optional: Some sequencing technologies, such as PacBio
sequencing, are extremely sensitive to environmental contami-
nants. If the DNA quality does not fit the requirements, PacBio

C. M. Kobel | PhD thesis 2025

72



262 Alessandra Ferrillo et al.

recommends using DNeasy PowerClean Pro DNA Clean-Up
Kit (QIAGEN) following the manufacturer’s instructions to
remove the contaminants and sequence inhibitors.

3.4 Sequencing and
Assembly

Numerous HTS technologies are now available, providing cheaper,
faster, and higher-throughput sequencing (see reviews [13, 29]).
Methods that produce short reads (up to 550 base pair [bp] in
length), such as Illumina, can generate high sequencing depth at
comparatively low costs. Illumina’s NovaSeq 6000 can generate up
to 6 terabyte of bases per run (2 × 250 bp, dual flow cell run on SP
flow cells), whereas the Illumina MiSeq can produce up to 15 Gbp
(with 2 × 300 bp), with both platforms exhibiting a mean error rate
<1% [30]. However, the high quantity of data for samples with
high species complexity often leads to increased difficulties for
metagenomic assembly, due to computational requirements. In
theory, longer read sequencing technologies can overcome many
of the known assembly problems associated with short reads
because they have the potential to resolve complex repeats and
span entire open reading frames (ORFs). These technologies have
traditionally been accompanied with other inherent issues, such as
lower sequencing depth and higher error rates. Examples of “third
generation” sequencing technology include ONT and single-
molecule high-fidelity (HiFi) developed by PacBio. PacBio HiFi
can provide high-quality sequences greater than 99% accuracy and
about 30–50 kbp in read length [13, 31]. ONT provides reads in
the same length range, but is often associated with higher error
rates, particularly related to insertions and deletion in homopoly-
mers. A common strategy to overcome this is to use accurate short
reads from Illumina to correct the errors (“polishing”) of the
assembled long reads [9, 32]. Promisingly, recent advances in
ONT have demonstrated the potential to reconstruct near-
complete microbial genomes from isolates with a modal read accu-
racy of 99%, without the need of polishing using short reads [33].

Assembly is a key stage required to generate large contiguous
sequence fragments (contigs), which are required to maximize the
number of ORFs and operons available for downstream CAZyme
screening. Assembly algorithms that process metagenomic data are
highly sensitive to the read coverage for community members,
which is correlated with the species complexity in a sample and
the metagenomic sequencing depth. A plethora of assembly algo-
rithms are currently available (reviewed by [29, 34]), including
several that are designed to handle large metagenomic datasets
such as MEGAHIT [35], metaSPAdes [36], and metaFlye
[37]. Many short-read assemblers use a de Bruijn graph approach
and initially deconstruct each read into a series of oligomers of a set
“word” length (commonly referred to as “k-mers”). The k-mer
length is often a user-specified parameter, with longer k-mers over-
coming repetitive/non-unique regions in the metagenome at a cost
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of reduced coverage and accuracy. In contrast, short k-mers gener-
ate contigs with higher coverage, but are often shorter in length.
Algorithms designed for longer reads have traditionally used an
overlap-consensus approach, where sufficiently similar reads
(based on an overlapping nucleotide region) would be merged
into a contig. Enhanced sequencing depth and improved basecal-
ling, accompanied with an increased popularity of ONT and Pac-
Bio, have led to the development of new, long-read assemblers that
utilize a modified de Bruijn graph or repeat graph approach, such as
Flye [38]. Subheading “Assembly of short read produced by Illu-
mina usingMEGAHIT ” details the assembly of Illumina data using
MEGAHIT [35], an iterative (iterates from a small k to a large k) de
Bruijn graph de novo assembler for short-read sequencing data
with highly uneven sequencing depth, which is typically character-
istic of many metagenomic datasets. Subheading “Assembly of
long-reads produced by Oxford Nanopore using metaFlye”
describes the assembly of ONT data using Flye in metagenome
mode (“metaFlye”). While de Bruijn graphs require exact k-mer
matches, the repeat graphs utilized by Flye are built using approxi-
mate matches to handle noisy sequences.
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Alternative approaches to reduce the computational strain of
metagenomic assembly include the use of taxonomic binning or
normalization methods to select subsets of reads that are then
assembled separately as well as hybrid assemblies that use data
from multiple sequencing platforms [39, 40]. Hybrid assemblies
are still infrequent for metagenomic analysis, despite indications
that combined approaches yield improvements in assembly conti-
guity and per-base accuracy, which are important in CAZyme dis-
covery projects that seek to interrogate larger saccharolytic gene
clusters (see Subheading 3.7.4). In particular, several studies have
shown that high confidence reads from Illumina can be used to
correct the errors inherent in ONTand PacBio sequences [9, 41]. A
combination of ONT long reads and Illumina short reads provides
an improvement in assembly statistics such as total assembly size
and large contig size [9]. It also improves the assembly of the
universal marker genes, which assists in binning and enables
enhancements in genome reconstruction of uncultured microor-
ganisms that inhabit complex communities [31, 42].

Subheadings 3.4.1, 3.4.2, and 3.4.3 outline the various stages
required to assemble Nanopore and Illumina raw reads, and gener-
ate HQ MAGs (see Note 12). While Illumina data can provide
high-quality metagenomic assemblies from complex microbial
communities, long reads enhance the reconstruction of HQ
MAGs, which are conducive to CAZyme searches. Specific exam-
ples include large datasets that have been assembled from the
rumen microbiome [32, 43]. The outlined workflow is based on
short-read sequencing by NovaSeq Illumina technology and long-
read sequencing using Oxford Nanopore Technology. The ONT
sequences were attained through the ligation sequencing kit
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SQK-LSK109 (Oxford Nanopore Technologies) using flow cells
from the R.9.4 generation on a MinION sequencer. While this is
currently a rapidly applied approach, it should be noted that the
newest ONT nanopore R10.4.1 flow cell technology significantly
improves the error rate upon basecalling of the reads. This advance
now provides a way to assemble high-coverage metagenomic gen-
omes without the need for Illumina polishing [33], which greatly
simplifies the complexity of the genome reconstruction pipeline
and minimizes any bias that might arise from the assumptions
that the short-read polishing pipelines rely on.
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When assembling metagenomic datasets from complex com-
munities, chimeric assemblies (misassemblies) can occur. Misassem-
blies can be prevented by producing paired-end reads, whereby one
read of the pair may map to a common sequence or a repetitive
element (ambiguous region with risk for chimeric assembly),
whereas the other can potentially map to a non-ambiguous region
and will limit misassembly. Contigs should therefore always be
inspected. Abrupt change in GC% content and read coverage within
the same contig can indicate chimeric assembly. Changes in the
contigs’ characteristics can be visualized using different tools such
as Anvi’o [44] or MGAviewer [45].

3.4.1 Quality Control and

Filtering

1. Filter and trim low-quality Illumina raw reads using FastP:

fastp –input1 *.R1.fq.gz –input2 *.R2.fq.gz --output1 trimmed.

R1.fq.gz –-output2 trimmed.R2.fq.gz -h trimmed_report.html -R

trimmed_report -q 30

The flag “-q” represents the quality value. A complete
report of filtering and trimming can be found in the “trimme-
d_report.html” file.

2. Inspect the quality of the long reads generated by Oxford
Nanopore sequencing using NanoPlot:

Nanoplot –N50 --fastq input.fq.gz -o output.Nanoplot.dir

Nanoplot requires fastq files which can be compressed
(bgzip, bzip2, or gzip) and will create multiple output files,
including plots for visualization of the quality metrics, such as
read length histogram. The flag “--N50” in the command line
indicates the N50 mark in the read length histogram, while
“-o” specifies the directory in which the output is generated.

3. Filter out low-quality long reads using Filtlong:

filtlong --min_length 5000 --keep_percent 95 input.fastq.gz |

gzip > trimmed_ONT.fastq.gz
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Filtlong requires fastq files as input files. The parameter “--
min_length” will discard any read which is shorter than the set
cutoff, in this case 5 kbp, while “--keep percentage” throws out
the worst 5% of the read. More parameters and information can
be found in the github page of Filtlong. After the filtering,
perform a quality check of the trimmed reads using the Nano-
Plot command (above) to check the efficiency of the trimming.

3.4.2 Metagenomic

Assembly

Input: Trimmed paired reads in fastq format.
Output: A directory containing the assembly fasta file with

contig sequences.
Assembly of Short Read

Produced by Illumina Using

MEGAHIT

Usage:

megahit -t <No.CPUs> -m <RAM> -1 trimmed_R1.fq.gz -2 trim-

med_R2.fq.gz -o <output directory>

Assembly of Long Reads

Produced by Oxford

Nanopore Using metaFlye

Input: Basecalled and trimmed reads in fasta or fastq format, the
files must be compressed in gz.

Output: A directory containing the ONT draft assembly
fasta file.

Usage:

Flye --meta --threads <No.CPUS> --nano-raw trimmed_ONT.fastq.

gz –o <output directory>

The flag “--nano-raw” is the default mode for regular ONT
data, whereas the parameter “--meta” indicates the metagenome
mode (uneven coverage mode).

3.4.3 Error Correction of

ONT Long Reads Using

Racon, Medaka, and

Polypolish

A combination of several polishing strategies and tools is often
needed to maximize the accuracy of the final contigs. Thus, error
correction of ONT long reads usually contains several steps, includ-
ing both long-read polishing (steps 1 and 2) and short-read pol-
ishing (step 3):

1. Error correction of ONT long-reads with Racon:
First, map the ONT reads to the sequences from the

assembly to generate an overlap file, e.g., using Minimap2
with the following command line:

minimap2 -x ava-ont assembly.fasta trimmed_ONT.fastq.gz >

overlap.paf

Then use Racon to polish the draft ONT assembly:
Input: The trimmed ONT reads, the assembly file in fasta

format, and overlap file(s).

C. M. Kobel | PhD thesis 2025

76



266 Alessandra Ferrillo et al.

Output: Consensus fasta sequences.
Usage:

racon -t <No.CPUs> trimmed_ONT.fastq.gz overlaps.paf assem-

bly.fasta > racon.consensus.fasta

2. Error correction of ONT long-reads with Medaka:
Input: The trimmed ONT reads and the fasta file generated

by Racon.
Output: Consensus fasta sequences.
Usage:

medaka_consensus -i input.fastq.gz -d racon.consensus.fasta

-o <output directory> -m r941_min_sup_g507

The flag “-m” indicates the model of the basecaller and
should be changed accordingly. The consensus.fasta generated
by Medaka will be saved to the output directory.

3. Error correction of ONT long-reads with Polypolish:
Before running Polypolish, use an aligner, e.g.,

bwa-mem2, to align the accurate short reads from Illumina
sequencing against the ONT consensus contigs generated by
Medaka. This will create SAM files.

bwa-mem2 mem -t <No.CPUs> medaka.consensus.fasta trimmed_R1.

fastp.fq.gz > aligned.R1.sam

bwa-mem2 mem -t <No.CPUs> medaka.consensus.fasta trimmed_R2.

fastp.fq.gz > aligned.R2.sam

Run Polypolish to polish the ONT assemblies with the
Illumina short reads:

polypolish_insert_filter.py --in1 aligned.R1.sam --in2

aligned.R2.sam --out1 filtered_R1.sam --out2 filtered_R2.sam

polypolish medaka.consensus.fasta filtered_R1.sam filter-

ed_R2.sam > polished_assembly.fasta

3.5 Binning Binning is the post-assembly taxonomic assignment of contigs into
genome bins/MAGs that enables the study of individual organisms
(and their interactions), directly from deeply sequenced metagen-
omes. Therefore, the task of a binning tool is to assign an identifier
to every assembled contig, with each identifier ideally representing
a single population genome [46]. The most common binning tools
today are based on unsupervised and reference-independent algo-
rithms that traditionally use oligonucleotide composition to group
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contigs with similar usage, thus effectively differentiating between
contigs of different populations, in particular focusing on their
tetranucleotide frequencies [47]. Today, binning tools increasingly
leverage additional information to improve genome recovery even
in the presence of multiple genomes from individual species in a
sample, such as paired-end read linkage [48], mean contig coverage
[49], per-sample (differential) coverage [50], or combinations
thereof [51, 52]. High-quality genomes can be recovered (Sub-
heading 3.5.1), in particular if multiple metagenomes of the same
community were generated, which subsequently can be mined for
new CAZymes. Dereplication or comparison of bins is often
required when multiple assemblies are available (Subheading
3.5.2) or when several binning tools have been applied indepen-
dently. In addition, binning results should be inspected carefully by,
e.g., looking at taxonomic assignments of individual contigs, visua-
lizing the underlying differential coverage information (as done in
Albertsen et al. [53]), or using an automated method for assessing
the quality of metagenome-derived microbial genomes [54] (Sub-
heading 3.5.3). Genome bins that have been quality checked and, if
necessary, refined are referred to as metagenome-assembled gen-
omes, or MAGs. Accurate taxonomic assignment of the recon-
structed MAGs is necessary to identify populations within the
studied ecosystem and can be used as anchoring points for hypoth-
esis on metabolic functions, including carbohydrate-degrading
populations (Subheading 3.5.4). Overall, computational tool
development for binning is a very active research area. The “Critical
Assessment of Metagenomic Information” (CAMI) initiative [55]
continuously benchmarks tools for binning, metagenome assembly,
and profiling on various benchmark datasets reflecting common
experimental setups and properties of underlying microbial com-
munities. Up-to-date evaluation results for several use cases and
commonly utilized software are available at: https://data.cami-
challenge.org/.
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3.5.1 Binning with

MetaBAT2

Input: Metagenome assemblies from long-read and short-read
sequencing (see Protocol 3.4.1) and read mapping file(s) in BAM
format, one file per sample.

Output: One fasta file per genome bin.
Usage:

runMetaBat.sh assembly.fa sample1.bam [sample2.bam ...]

Usually, there is a trade-off between a tool’s sensitivity and
specificity. MetaBAT’s default settings work reasonably well for
most use cases. However, for very simple or very complex commu-
nities, non-default options might improve binning results. To dis-
play the complete list of options, please run: metabat2 -h
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3.5.2 Dereplication of

Bins with dRep

Input: All genome bins (generated from both short- and long-read
sequencing), in fasta format.

Output: Dereplicated genome bins will be written to this
folder. These bins should be used in the downstream analysis.

Usage:

dRep dereplicate <output directory> –g <bin directory> -p <No.

CPU> -comp <value> -con <value>

The dereplicate parameter will reduce the sets of genomes
based on high gene similarity. It is, in addition, possible to filter
the bins based on completeness (“-comp”) and contamination
(“-con”).

3.5.3 Quality Assessment

with CheckM2

Input: Dereplicated genome bins in fasta format.
Output: Contamination and completeness estimates for each

genome bin.
Usage:

checkm2 predict --threads <No. CPUs> --input <bin directory>

-x fna --output-directory <output directory>

As a result, CheckM2 produce a tabular file (“quality_report.
tsv”) with the ID of each genome bin and their completeness and
contamination. The flag “-x” refers to the extension of the input
files (default: fna). Genome bins of high quality, hereby referred to
as MAGs, are used in the downstream analysis.

3.5.4 Assigning

Taxonomy to MAGs Using

GTDB-Tk

Input: MAGs in fasta format.
Output: A folder with two main output files with the prefix

“ar53” and “bac120” for Archaea and Bacteria, respectively.
Usage:

gtdbtk classify_wf --genome_dir <your MAGs> --out_dir <output

directory> --cpus <No.CPUs>

3.6 Gene Calling Once a metagenomic dataset has been adequately assembled and
taxonomically assigned, gene calling or ORF prediction is required
to identify protein or RNA coding regions within the (meta)-
genome. Depending on the assembly, its feasibility, and its success,
gene calling can be performed on assembled contigs or raw reads
(for long-read HTS data). There are two different ways for ORF
prediction. The “sequence similarity-based” method and the “ab
initio” gene-calling method [56]. The “sequence similarity-based”
method uses homology searches to identify genes similar to those
already present in databases. This method possesses high specificity
and the ability to characterize functions of predicted genes. The “ab
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initio” gene-calling approach relies on dependencies between
codon frequencies and genome nucleotide composition to discrim-
inate coding from noncoding regions. Frequently, metagenomic
assemblies result in many genes that are partially sequenced or
fragmented. In addition, metagenomic data from diverse commu-
nities can have too low similarities with sequences from databases
due to evolutionary distance or short contig/read lengths, which
can prevent the identification of homologs and poor detection of
novel genes. Therefore, ab initio tools such as Prodigal [57] are
essential for metagenomic analysis, especially when looking for
novel enzymes [56]. Prodigal has been successfully used to predict
ORFs from various metagenomes [9, 10, 32] and is often a key
component of MAG annotation tools (e.g., Distilling and Refining
Annotations of Metabolism, DRAM), thus requiring minimal
effort to operate (DRAM will be covered in Subheading 3.7.3).
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3.7 Enzymes/
Pathway Annotation

Gene calling is typically followed by functional annotation, which
details comparisons of predicted ORFs to previously annotated
sequences present in functional databases. The objective is to gen-
erate accurate annotations to correctly identified orthologues.
There are multiple approaches to annotate ORFs and numerous
tools and databases are publicly available. These include, among
others, COG (Clusters of Orthologous Groups) for functional
grouping [58], Pfam (the protein families database) for the identi-
fication of protein families and domains [59], TIGRfam for full-
length protein families [60], and Enzyme Commission (E.C.)
numbers for numerical classification scheme for enzymes, based
on the chemical reactions they catalyze [61]. In addition, particular
databases enable reconstruction of pathway maps for cellular and
organismal functions. Key examples include BRENDA (BRaunsch-
weig ENzyme Database [62]), KEGG (Kyoto Encyclopedia of
Genes and Genomes) [63], and MetaCyc (Metabolic Pathway
Database) [64].

Many functional annotation resources are collectively available
via web-based platforms that provide support for visualization and
comparative analysis of metagenomic datasets. For example, the US
Department of Energy-Joint Genome Institute hosts the
Integrated Microbial Genomes with Microbiome Samples—Expert
Review (IMG/MER) system, which provides support for func-
tional annotation and curation of metagenomic datasets of interest.
A typical pipeline analysis in IMG/MER starts with the user
uploading metagenomic contigs and/or unassembled reads.
Protein-coding genes are identified using four ab initio gene-
calling tools: GeneMark, MetaGeneAnnotator, Prodigal, and Frag-
GeneScan. Predicted proteins are compared with protein families
and proteomes of selected “core” genomes. Protein sequences are
compared with COG using RPS-BLAST [65] and Pfam and TIGR-
fam using HMMER 3 [66]. Finally, protein-coding genes are
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associated with KEGGOrthology terms, EC numbers, and phylog-
eny using USEARCH [67] against a nonredundant reference data-
base composed of the public genomes available on IMG and KEGG
database. Further information and a procedure to submit data on
IMG can be found on [68] and on IMG website (https://img.jgi.
doe.gov/).
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3.7.1 CAZyDB, dbCAN,

and Multimodular CAZymes

For metagenomic projects dedicated to CAZyme discovery, it is
recommended that ORFs are annotated using a specialized data-
base. The most comprehensive database is the CAZyme database
[69] (hereafter called CAZyDB), which specializes in the display
and analysis of genomic, structural, and biochemical information
on carbohydrate-active enzymes. The CAZyDB contains families of
catalytic and ancillary modules that are presented as glycoside
hydrolases (GHs), glycosyltransferases (GTs), polysaccharide lyases
(PLs), carbohydrate esterases (CEs), auxiliary activities (AAs), and
the non-catalytic carbohydrate-binding modules (CBMs). The
CAZyDB identifies evolutionarily related families using the classifi-
cation introduced by Bernard Henrissat [70], which are based on
significant amino-acid sequence similarity with at least one bio-
chemically characterized founding member. The CAZy group
actively develops tools for unambiguous high-throughput modular
and functional annotation of CAZymes in sequences issued from
genomic and metagenomic efforts. Annotation of unpublished
datasets therefore requires collaboration with CAZy researchers;
otherwise query proteins are required to be deposited as finished
entries in GenBank (or EMBL and DDBJ) and will be analyzed via
their operational routines.

Several alternatives to CAZyDB currently exist for automated
CAZyme annotation, including dbCAN [71] and CAT (obsolete)
[72]; however, neither has the same levels of manual inspection by
expert curators that is offered by CAZy. Importantly, dbCAN
enables automated and comprehensive annotation that is based
on the classification scheme of CAZyDB but relies on a defined
signature domain model for each CAZyme family [71]. In addition,
signature domains of each CAZyme family are represented by a
hidden Markov model that is available to the public and easily
amendable to local searches within unpublishedmetagenomic data-
sets. Searches against the dbCAN database can be performed either
through its web platform, locally (as described below), or as part of
an annotation pipeline (e.g., “DRAM”; see Subheading 3.7.3).

3.7.2 Search Against

dbCAN3 Database

Protein sequences can be loaded on the web server: https://bcb.
unl.edu/dbCAN2/index.php.

Web Server
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Local Search 1. Download the dbCAN databases and tools using conda:

conda create -n run_dbcan python=3.8 dbcan -c conda-forge -c

bioconda

conda activate run_dbcan

2. Run: run_dbcan.py <input fasta file> <type of input> --out_-
dir <output directory>

3. Complementary information and extra parameters can be
found in the following repository: https://github.com/
linnabrown/run_dbcan.

3.7.3 Functional

Annotation Using DRAM

DRAM is a tool that annotates MAGs using seven different data-
bases for functional gene annotation (dbCAN [71], VOGDB [73],
KOfam [74], UniRef [75], MEROPS peptidase database [76],
KEGG [63], Pfam [59]) as well as the individual software
packages/algorithms needed for their application. It also includes
scripts that merge and filter these results into summary tables and
produces convenient heatmaps [77]. The brief guide below will
show you how to run the DRAM workflow on a set of MAGs using
DRAM v1.2.4. By disabling UniRef, which is the most taxing
database in terms of memory usage, it is possible to cut down on
the RAM usage to around 128 GB. These requirements may neces-
sitate the use of a high-performance computing cluster (HPC) or at
least a workstation computer (~128 GB RAM, 20 cores). A typical
DRAM workflow can be split into two steps which we will run
subsequently: (1) annotation and (2) distillation. In the (1) anno-
tation step, each genome is run against the seven main databases
using various algorithms, and the results are merged into a single
table, and in step (2) distillation pathways and functional modules
are highlighted based on the called genes. DRAM can annotate any
fasta-formatted genomic sequence, such as scaffolds before bin-
ning, single-cell amplified genomes (SAGs), isolate–culture assem-
blies, or metagenome-assembled genomes (MAGs). For this
example, we will consider a set of MAGs.

1. Annotate
Input: MAGs in fasta format.
Output: A directory named “annotation” containing sev-

eral tables with summaries of called genes in each inputMAG as
well as fasta files containing the called genes.

Usage:

DRAM.py annotate -i <your MAGs> -o annotation

When specifying input MAGs, <your MAGs> can be a
glob, e.g.: “path/to/mags/*.fasta”. However, this glob
should be contained within quotation marks ("") as the
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command line argument parser will only read the first string
given after the -i option key. The DRAM.py annotation com-
mand will create a sub-directory named “annotation” where all
annotation results will be laid out. By default, DRAM will filter
out contigs in the input MAGs with a length of less than 2.5
kilobases. The main result of the annotation step is a single file
called “annotations.tsv”. For each sample’s contigs, it contains
exact coordinates for each called gene’s position and
DNA strand direction, as well as each gene’s identifiers for the
respective database hits. Additionally, the annotations.tsv file
contains a confidence rank based on cross-validating the pres-
ence of genes between databases utilizing RBH (Reciprocal
Best Hits). These ranks are encoded with letters A to E, where
A denotes the highest confidence. There are tables called rRNAs
and tRNAs, and the called genes are available in both GFF3 and
GenBank formats. The DRAMoutput fromwhich the contents
of the annotations.tsv table are derived is also generated in
various other formats. Predicted ORFs are available in both
amino-acid and nucleotide formats, with indexing that facili-
tates customized downstream analysis or use of the DRAM
“distill” command which makes further DRAM processing
possible.
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2. Distill
DRAM is bundled with an internal database consisting of

3684 genes categorized into various functional modules and
pathways. The “distill” step takes the results from the first
annotation step and uses aforementioned database to create a
summary that highlights which metabolic pathway each
genome is encoding. Running the “distill” command requires
paths to the outputs from the first step which includes the
annotations.tsv file as well as the rRNAs and tRNAs files.

Input: A directory containing the output from the previous
“DRAM.py annotate” call.

Output: A directory named “genome_summaries” con-
taining summaries of functional interpretations of the genes
present in each input MAG, including tables and a graphical
visualization.

Usage:

DRAM.py distill -i annotation/annotations.tsv -o genome_summ-

aries --trna_path annotation/trnas.tsv --rrna_path annotation/

rrnas.tsv

The “distill” command outputs an excel file with individual
sheets for eight different functional groups of genes. Each sheet
contains an enumeration of genes and the count of occurrences
of each of these genes in each processed genome/MAG.
DRAM uses the KEGG gene/pathway hierarchy to calculate
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the completeness of individual pathways and otherwise uses a
manually curated threshold for each functional group to dis-
criminate the presence of the respective pathway. An HTML
file with an interactive heatmap summarizing this completeness
and presence for all these modules for each genome is also
generated.
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3.7.4 Identifying Plant

Biomass-Degrading Loci

In addition to identifying individual CAZymes, it is valuable to
observe a more global picture by identifying the gene localization
and organization of CAZymes encoded in the microbial commu-
nity. This enables visualization of potential plant biomass-
degrading operons that are encoded within a metagenome. Several
exemplary saccharolytic mechanisms are encoded by large
co-regulated gene clusters and have been successfully recovered in
metagenomes, including (and not limited to) Gram-negative
(gn) and Gram-positive (gp) polysaccharide utilization loci
(PULs) as well as cellulosomes [78, 79]. Tools such as the
IMG/MER are conducive to identifying gene clusters, whereby
once a metagenome has been uploaded, signature protein domains
for specific gene clusters can be searched and the surrounding
ORFs visualized and functionally interrogated. For gnPULs, sev-
eral Pfam domains represent the archetypical outer-membrane pro-
teins SusC and SusD [80], including the following IDs:
TonB_dep_Rec (PF00593), TonB_C (PF03544) SusD
(PF07980), SusD-like (PF12741), SusD-like_2 (PF12771), and
SusD-like_3 (PF14322). gpPULs are typically defined by the pres-
ence of CAZymes co-localized with one of three classes of trans-
porters [1]: ATP-binding cassette (ABC) transporters (PF00005),
phosphoenol-pyruvate: carbohydrate phosphotransferase system
(PTS) transporters (PF00381), or major facilitator superfamily
(MFS) transporters (Pfam clan CL0015). For cellulosomes, key
signatures include cohesin (PF00963) and dockerin (PF00404)
domains. In addition to known PULs, other uncharacterized loci
can be investigated by using gene identifiers from previously char-
acterized CAZymes as a search query and interrogating surround-
ing genomic regions. However, such an approach requires manual
intervention and is not amendable to large collections of CAZymes.
Alternative approaches that use bioinformatics methods to identify
uncharacterized loci are discussed below (Subheading 3.8).

3.8 Identifying New
Gene Targets

Many CAZymes are multimodular with catalytic modules and one
or more additional domains that are often substrate-targeting car-
bohydrate-binding modules (CBMs). “Module walking” is a
method that probes the potential CAZyme activity of unknown
regions or domains of ORFs that flank annotated CAZyme
domains. This method has been used by Hemsworth et al. [81]
to find a new LPMO family (AA11). Based on the observation that
several sequences from AA9 LPMO family carry a conserved
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domain of unknown function (X278), the authors searched for
other multimodular proteins containing that domain, and then
looked at the adjacent regions within an X278-encoding ORF
and identified hypothetical domains with LPMO-like characteris-
tics. Interestingly, those domains did not exhibit significant similar-
ity to other LPMOs families (AA9 and AA10) and were thus
considered as a new LPMO family (AA11).

274 Alessandra Ferrillo et al.

Other methodologies to consider that can assist in CAZyme
identification is the incorporation of additional “meta-omic” data,
such as metaproteomics or metatranscriptomics, which are power-
ful tools when used in combination with metagenomics. In partic-
ular, mapping functional meta-omic data against reconstructed and
taxonomically assigned metagenomes enables the visualization of
the species identity, together with the relative quantity of key
CAZymes and proteins that are expressed in response to polysac-
charide cues [8]. Such techniques have the potential to detect
known CAZymes that are metabolically active, as well as to identify
hypothetical genes that are upregulated and/or expressed in
response to growth on a particular plant biomass substrate. In
such instances, these emphasized ORFs are presented as key targets
for downstream biochemical characterization. Using these
approaches, gene clusters coding for CAZymes and other activities
related to polysaccharide utilization have been identified and func-
tionally characterized in gut bacteria; these include, among others,
mechanisms for degradation of the common food additive xanthan
gum in the human gut [10] and depolymerization of feed-derived
components in the rumen ecosystem [7].

Using today’s molecular toolkit together with the constant
improvements in sequencing technologies and bioinformatics
tools, the mining for CAZymes and novel enzymes is becoming
more accessible and amendable. Data can be generated from a
wider range of environments, providing a direct way to interrogate
uncultivable phylotypes that constitute a microbial community and
enable access to untapped sources of new and interesting
CAZymes [10].

3.9 Visualization and
Integration of
Phylogenomics and
Abundance of CAZy
Genes Detected by
DRAM

After assessment of quality (with CheckM2, see Subheading 3.5.3),
taxonomic (with GTDB-Tk, see Subheading 3.5.4) and functional
annotation (with DRAM, see Subheading 3.7.3) of the MAGs, a
visual representation of the phylogenetic clusterization (e.g., phy-
logenetic tree) and the annotations (e.g., heatmaps) are often desir-
able. Different software can be used to generate phylogenetic trees
of the MAGs, including PhyloPhlAn [82], Anvi’o [83], and
IQ-TREE [84]. Online tools like iTOL [85] can further provide
visualization of the tree, along with annotation. In the following
workflow, we present an in-house developed protocol that utilizes
the PhyloPhlAn tool to produce a phylogenetic tree of the MAGs
by searching and aligning 400 single-copy phylogenetic markers,
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followed by the R package GGTree [86] to merge and visualize the
tree with quality metrics (completeness and contamination) and
taxonomy annotations of each MAG. Next, we provide an
R-script that parses the information of CAZy-annotated genes by
DRAM, and plot a heatmap of their abundance, clustered by their
putative target glycan (e.g., starch, pectin, or chitin) and the phy-
logenetic group of each MAG.
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3.9.1 PhyloPhlAn The following bash for loopwill create amino-acid fasta files from the
MAGs using Prodigal [57] and subsequently generate a maximum-
likelihood phylogenetic tree of all MAGs utilizing PhyloPhlAn:

for MAG in ./*.fasta; do; echo “starting gene prediction” ;

prodigal -a $MAG.faa -o $MAG.prodigal.out -f gff -i MAG ; done

mkdir ProteinPredictions

mv *.faa ProteinPredictions

phylophlan -i ProteinPredictions -d phylophlanDataBase -t a --

diversity high -f supermatrix_aa.cfg --verbose --nproc <No.

CPUS>

3.9.2 GGTree The following R-script provides an example of how the generated
MAG information can be visualized using the GGTree and
GGTreeExtra Bioconductor R packages:

https://github.com/TheMEMOLab/MetaGVisualToolBox/
blob/main/scripts/GenoTaxoTree.R

Input: CheckM2 tabular results, GTDB-Tk classification tables
of Bacteria and Archaea, PhyloPhlAn phylogenetic tree.

Output: A figure of the phylogenetic tree produced by Phy-
loPhlAn annotated with taxonomy and quality information from
GTDB-Tk and CheckM2 by circular heatmaps (see Fig. 2a).

Usage:

git clone https://github.com/TheMEMOLab/MetaGVisualToolBox/

Rscript MetaGVisualToolBox/scripts/GenoTaxoTree.R quality_

report.tsv gtdbtk.bac120.summary.tsv gtdbtk.ar53.summary.tsv

RAxML_result.Proteins_refined.tre OutputName

3.9.3 CAZy Heatmap The following R-script provides an example of how to parse the
information obtained by the DRAM.py distill command to extract
all the CAZy genes encoded in the MAGs, add the taxonomic
information, and then visualize the abundance of all the CAZy
domains targeting particular glycans using a heatmap:

https://github.com/TheMEMOLab/MetaGVisualToolBox/blob/
main/scripts/CAZYheatmap.R
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Fig. 2 Visualization of phylogeny and CAZy encoding genes in MAGs. (a) Phylogenetic tree, with phyla taxonomy
and MAG quality (completeness and contamination). (b) Heatmap displaying the abundance (in log2) of CAZy
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Input: metabolism_summary.xlsx file from DRAM distill,
CheckM2 tabular results, GTDB-Tk classification tables of Bacteria
and Archaea.

Output: A pdf file with a heatmap showing the abundance of
CAZy encoding domains in each MAG clustered by taxonomy
(columns) and glycan target (rows; see Fig. 2b).

Usage:

Rscript MetaGVisualToolBox/scripts/CAZYheatmap.R metabolism_-

summary.xlsx quality_report.tsv gtdbtk.bac120.summary.tsv

gtdbtk.ar53.summary.tsv OutputName

4 Notes

1. Biomass samples can be stored at 4 °C in phenol/ethanol (5%/
95%) pH 8.0 for several weeks or as a biomass sample at-80 °C
for longer periods. We recommend processing the samples as
quickly as possible. Longer storage may result in differential
lysis of microbial cells.

2. After two to three repetitions, the cell-containing supernatant
in step 4 should become much clearer as cells are removed and
collected. Long exposure of samples to dissociation buffer
should be avoided due to its low pH. It’s recommended that
no more than two to three repetitions be performed.

3. Dissociated cells may be stored at 4 °C for 1 day or- 20 °C for
several weeks.

4. Some samples, such as rumen biomass, will contain undigested
material. Thus, if Subheading 3.3.1 is omitted, it is important
to use wide-bore pipette tips to avoid clogging.

5. Homogenizing samples at higher speed may increase yields but
will likely result in more fragmented DNA. Cell lysis can alter-
natively be carried out using PowerLyzer 24 or TissueLyser.

6. The concentration should be determined using Qubit or Pico-
Green assay. The performance of the kit depends on the input
of DNA being homogeneous and not viscous (see page 14 in
the handbook).

Fig. 2 (continued) domains encoded in different MAGs. The colors on the columns represent the different
phyla classified by GTDB-Tk and on the rows the putative target glycan. Glycan target information was
obtained from DRAM annotation. Letters and numbers in each row represent different catalytic CAZy families:
GH glycoside hydrolase, PL polysaccharide lyase. (The MAGs shown in this figure are recovered from
anaerobic digestion enrichment [87] and available from https://figshare.com/articles/dataset/MAGs/131024
51)
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7. The pellet may not be visible: be careful to not accidentally
disturb or aspire the DNA! Always position the tubes in the
centrifuge with the same orientation, and aspire the superna-
tant by pipetting on the opposite side (towards the thumb lid).

8. HMWDNAmay take more time to resuspend. Heating to 50 °C
or incubating for a longer time can help increase the recovery.

9. CTAB specifically binds to proteins at high salt concentrations.
Steps 3–5 should remove cell wall debris, denatured proteins,
and polysaccharides complexed, while retaining the nucleic
acids in solution. Aqueous phase should be clear before pro-
ceeding to step 6. If aqueous phase still retains an opaque-
yellow color, repeat steps 3–5.

10. No DNA spool in step 7 implies either that the DNA is of low
concentration or that the DNA has sheared into relatively
low-molecular weigth fragments. The DNA can still be col-
lected by centrifugation at 14,000× g for 30 min at 4 °C before
proceeding to step 8.

11. DNA can be stored at 4 °C for short periods, or at -20 °C for
longer terms. It is recommended to restrict the number of
freeze–thaw cycles as this can degrade HMW DNA.

12. Every metagenome is unique and requires specific consider-
ation and analyses to adapt to its particular confines. The work-
flow provided here is intended as a guideline for CAZyme
discovery through metagenomics and may need modifications
according to the origin of the metagenome and the aim of each
study.
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González A, Caporaso JG, Knight R (2011)
Using QIIME to analyze 16S rRNA gene
sequences from microbial communities. Curr
Protoc Bioinformatics Chapter 10 36:Unit
10.17

15. Gilbert JA, Jansson JK, Knight R (2014) The
Earth Microbiome project: successes and
aspirations. BMC Biol 12:69

16. Royo-Llonch M, Sánchez P, Ruiz-González C,
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Moore RM, Clayssen Q, Lee MD, Kivenson V,
Graham ED, Merrill BD, Karkman A,
Blankenberg D, Eppley JM, Sjödin A, Scott
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Abstract
Here, we present CompareM2, a genomes-to-report pipeline for comparative analysis of

bacterial and archaeal genomes derived from isolates and metagenomic assemblies.

CompareM2 is easy to install and operate, and integrates community-adopted tools to

perform genome quality control and annotation, taxonomic and functional predictions, as well

as comparative analyses of core- and pan-genome partitions and phylogenetic relations. The

central results generated via the CompareM2 workflow are emphasized in a portable

dynamic report document. CompareM2 is free software and welcomes modifications and pull

requests from the community on its Git repository at https://github.com/cmkobel/comparem2

.

Keywords:

microbiology, bacteria, archaea, genomics, metagenome assembled genomes,

bioinformatics, pipeline, workflow, genomic annotation, phylogenetics, parallel computing

Background
Costs are decreasing both for sequencing of microbial genomes and complex microbiomes

and for the computational resources necessary to analyze generated reads. This has led to

an exponential growth in the number of available genomes and metagenome-assembled

genomes (MAGs). Despite this growth, there are limits on the accessibility of software that

1
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can analyze the evolutionary relationships and functional characteristics of microbial

genomes in order to assess variation of both known and unknown species. Much of the

software commonly used to analyze prokaryotic genomes has a high user entry level,

requiring advanced skills for complicated installation procedures, debugging dependency

issues, and circumventing operating system-specific limitations. This results in a

disproportionate amount of time being spent by researchers on setup and technical

preparations needed to analyze the sequenced genomic reads rather than biologically

relevant analysis of scientific data. These factors define the backdrop that has motivated the

conceptualization, development, and application of the CompareM2 genomes-to-report

pipeline, which is designed to be an easy-to-install, easy-to-use bioinformatic pipeline that

makes extensive analysis and comparison of microbial genomes straightforward.

We compared CompareM2 to several other pipelines that are designed for overlapping use

cases: Nullarbor1, Tormes2 (stylized TORMES) and Bactopia3 (Table 1). Nullarbor and

Tormes do assembly and comparison and have a focus on antimicrobial resistance, spread

of pathogens, and core genomes relevant for analyzing individual species. They both

produce a report document that is similar to what CompareM2 produces. Bactopia does both

assembly and comparative analyses, but while it does some comparative analyses in

conjunction with assembly, the user must launch individual predefined workflows included in

the Bactopia Tools extension to compare between the samples. Bactopia does not have a

parallel scheduler for running these comparative tools. While it does not produce a report

document, it does have more overlapping tools with CompareM2 when considering the

Bactopia Tools extension. Neither Tormes nor Bactopia is designed for analyzing archaea,

although many of the tools integrated in these pipelines are applicable for archaeal genomes

when care is taken, e.g. core/pan genome reconstruction and phylogenetic analysis, etc.

Furthermore, there is a lack of tools to analyze archaea which means that in many cases,

researchers may opt to use non-archaeal tools for analysis of these. For this reason we have

opted to compare them to CompareM2, which is designed to analyze both bacteria and

archaea.

Table 1: Qualitative comparison of Nullarbor, Tormes, Bactopia and CompareM2.

Nullarbor1 Tormes2 Bactopia3 CompareM2

Parallel workflow
management (system)

yes (GNU
make)

no yes (Nextflow) yes
(Snakemake)

Built in compatibility
with high performance
computing (HPC)
workload managers.

no no yes yes

2
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Assembly-agnostic
characterization

no no no yes

Officially designed for
Bacteria and Archaea

no no no yes

Quality control yes yes yes yes

Annotation yes yes yes yes

Core/pan genome
partitioning

yes yes yes (using
Bactopia Tools
extension)

yes

Phylogenetics yes no yes (using
Bactopia Tools
extension)

yes

Portable visual report
document

yes yes no yes

Automated installation yes yes yes yes

Minimal number of steps
in installation
instructions (after
installing Conda)

NA 3 1 1

Automated database
download and setup

no yes (no
checkpoints)

yes yes

Conda environment
solvable with strict
channel priority

NA no yes yes

Docker compatible
containerization

NA no yes yes

Conda recipe availability
(channel)

yes (bioconda) no yes (bioconda) yes (bioconda)

Age of current release Approx. 6
years

Approx. 3
years

Approx. 1
month

Approx. 1
month

License GPL-v2 GPL-v3 MIT GPL-v3

Current version 2.0.20191013 1.3.0 3.0.1 2.8.1

Repository github.com/tse
emann/nullarbo
r

github.com/nm
quijada/tormes

github.com/bac
topia/bactopia

github.com/cm
kobel/compare
m2

Tormes has a sequential architecture, which means that it runs one sample at a time and

one tool at a time. This is in contrast to CompareM2 and Bactopia, which have a parallel job

scheduler where several samples and tools can be run at the same time. CompareM2

inherits this property from Snakemake, on which it is built. Bactopia on the other hand is built

3
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on the Nextflow workflow system which in many cases is comparable to Snakemake. Central

processing units (CPUs) of computers, whether in laptops, workstations, or HPCs, are

seeing an increasing number of physical cores. To take advantage of this, it is necessary for

software to have a parallel architecture that can utilize the full potential of the processing

resources available. This is especially important on HPCs, where many independent

compute nodes can run parallel jobs in a scalable manner.

Another bottleneck in bioinformatics is the interpretation of large output files and visualization

of data in an informative manner. CompareM2 produces a graphical report that contains the

most important curated results from each of the analyses carried out on the user-specified

set of query genomes. This report contains text and figures that explain the significance of

the results, which makes it easy to interpret for users with a non-bioinformatics background.

While CompareM2 can be used to compare prokaryotic isolate genomes, it also contains

tools to analyze bins or MAGs from the sequencing of large microbial communities. The

genome is the foundation of any multi-omics study, and such a resource of annotated

genomes can be readily integrated into subsequent multi-omics analyses. For example,

metaproteomic searches require a highly specific and well-annotated genome database to

match MS/MS spectral data4,5.

Results
CompareM2 congregates the most commonly used and community-tested tools to perform

prokaryotic genome quality control, gene calling, functional annotation, phylogenetic

analysis, and comparison of genomes across the core-pan spectrum. A major priority of

CompareM2 is the ease of installation and use, which is achieved by containerizing all

bundled software packages and automatizing the download and setup of databases. The

choice of genomes to input can be any set where there is a comparable feature either within

or between species. The number is limited by the computational resources but the dynamic

report is designed for comparing hundreds of genomes.

Software design

CompareM2 is written as a command line program that the user calls with the input

genomes that they wish to analyze. It has a text interface where the user can define optional

parameters and a single executable that takes care of the overall procedure: First, it checks

for presence of the Apptainer runtime, and defines reasonable defaults for database

directories and configuration files, in case the user has not specified these manually as

4
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environment variables. There also is a “passthrough arguments” feature that makes it

possible to address any command line argument to any rule in the workflow. (further details

in documentation https://comparem2.readthedocs.io/en/latest/ ). One example of a setting

that can be defined via the configuration file is whether to optionally submit jobs through a

workload manager like Slurm, PBS, etc., typically used on high-performance computing

clusters (HPCs). Next, the executable dispatches the main Snakemake pipeline that runs all

genomic analyses. This main pipeline automatically installs all necessary software

environments and automatically downloads necessary databases, depending on which

analyses the user has selected to run. Finally, it dispatches rendering of the dynamic report

which contains the results of the main pipeline. This report is dynamic in the sense that it

only includes the results which are present, which means that it can be rendered

independently of which analyses the user has selected to compute.

Overall, CompareM2 is designed in such a way that the user can install the complete

software in a single step. Similarly, running all analyses on a set of microbial genomes

(bacterial and archaeal) can be launched in a single action, and the curated results can be

studied in the dynamically rendered report. The machine requirements are a

Linux-compatible OS with a Conda-compatible package manager, e.g., Miniforge, Mamba or

Miniconda. There is nothing standing in the way of running CompareM2 on other operating

systems, but many of the included bioinformatic tools for genomic analysis are mostly

compatible with Linux-like x64-based systems. For a technical description of how

CompareM2 is implemented, please see the Methods section.

For demo reports, please see

https://comparem2.readthedocs.io/en/latest/30%20what%20analyses%20does%20it%20do/

#rendered-report .

Benchmarking

Initially, we wanted to compare CompareM2 to Nullarbor1, Tormes2 and Bactopia3. As none

of these tools support the external long-reads based assembly, binning and dereplication

pipeline where our MAGs were sourced from, we inputted the finished MAGs as is into these

tools. Unfortunately this was not possible for Nullarbor, as it is not able to run without reads6.

Nonetheless, we have included Nullarbor in Table 1 for the purpose of a qualitative

comparison.

We compared the running times of CompareM2, Tormes, and Bactopia when scaling up the

number of input MAGs to analyze on a single workstation. We considered two different

genera: Methanobrevibacter, which are archaea from the class Methanobacteria, and

5
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Prevotella, which are Gram-negative bacteria from the class Bacteroidia. Our MAGs have an

average genome size of 2.19 Mb for Methanobrevibacter and 3.07 Mb for Prevotella.

Species prediction and genome sizes are measured on the analyzed MAGs with GTDB-Tk7

and assembly-stats8 using CompareM2 itself.

Although Bactopia, Tormes, and CompareM2 are designed for overlapping use cases, they

are still very different, because they implement different kinds of analyses. In order to make

them as comparable as possible, we ran only the analyses with pairwise overlap between

CompareM2 and each of the two other tools. This was done using CompareM2’s “until”

parameter to specify exactly which rules to run. CompareM2 in “Bactopia mode” includes

rules sequence_lengths, assembly_stats, prokka, abricate, and mlst, whereas CompareM2

in “Tormes mode” includes rules prokka, abricate, assembly_stats, mlst, panaroo, and

gtdbtk.

Fig. 1: Wall running time analysis comparing CompareM2 to Bactopia and Tormes. In each

comparison, CompareM2 was run in a mode where it creates a comparable set of results to the

pipeline it is compared to. All analyses ran with 3 replicates, the error bars show means ± the

standard deviation of these replicates. A vertical dashed line highlights input size = 32 which is equal

to the number of cores used in each benchmark.

6
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We analyzed the running time of Bactopia, Tormes and CompareM2 when increasing the

input size (number of input genomes) (Fig. 1). The running times of all tools were

approximately linear functions of the input size (time = input size × slope + constant) but with

big differences between pipelines in the slope. There are hints of an exponential component

in the scaling of running time for Tormes and CompareM2 in Tormes mode, likely because

these pipelines construct core genomes, which is a computationally expensive problem

where all genes, in the case of Panaroo and Roary, are compared in a pairwise manner9,10.

The running time per genome was generally higher for Prevotella than Methanobrevibacter,

which is expected since Prevotella has a slightly larger average genome size, meaning that

the total number of genes to be processed is larger.

For running time per number of input genomes, CompareM2 outperformed both Tormes and

Bactopia significantly. When analyzing 44 Methanobrevibacter MAGs, CompareM2 is 4.1

times faster than Bactopia and 7.2 times faster than Tormes. For 124 Prevotella MAGs,

CompareM is 3.1 and 7.8 times faster than Bactopia and Tormes, respectively (Table 2).

Table 2: Wall running time in seconds for analyzing 44 Methanobrevibacter MAGs or 124 Prevotella

MAGs. “Factor” denotes how many times slower each tool is compared to the fastest. The fastest tool

is marked with an underline (in both cases CompareM2). All numbers are means of three replicates.

44 Methanobrevibacter genomes 124 Prevotella genomes

minutes factor minutes factor

CompareM2 6.6 1.0 29.7 1.0

Bactopia 27.0 4.1 91.0 3.1

Tormes 47.7 7.2 230.5 7.8

Discussion
CompareM2 is significantly faster than both Tormes and Bactopia as its running time scales

much better with increasing input size. Notably, running time scaled approximately linearly

with a small slope even when increasing the number of input genomes well beyond the

number of available cores on the machine. The running time of each pipeline comes down to

the time it takes to run each included tool on each sample, so differences between pipelines

in terms of running time are determined by how they allocate resources and schedule jobs

efficiently in parallel.

7
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The speed of Bactopia is strongly affected by its reads-based approach: If reads are not

input by the user – which was not possible in this case because we compared genomes that

were assembled using a different pipeline – Bactopia creates artificial reads with ART11. This

is done in order for Bactopia to be able to compare genomes without reads to genomes with

reads. CompareM2 on the other hand is designed to compare genomes without reads and

thus does not have to spend computing resources on producing these artificial reads. It

should be noted that if the user runs more comparative analyses using the Bactopia Tools

extensions, the scalability will be worse since the Bactopia platform does not offer to

schedule running several tools in parallel. While Tormes does not suffer from producing

artificial reads, it does fall short on not having a parallel workflow management system. As it

runs all samples sequentially, running each tool at a time, it is not competitive on HPCs or

multi-core CPUs. Generally, the running time standard deviations are negligible because the

relative time differences are large. The running time was computed on a 64-core workstation

(see Methods - Benchmarking). We ran the analysis by allocating 32 cores on this machine.

By running with a lower number of cores than the machine has, we lower the chances that

any other component than the CPU is the main bottleneck for computation.

Since both Tormes and Bactopia are designed for different use cases, they might not

represent the perfect contenders for a comparison with CompareM2. Nonetheless, to our

knowledge, they are the most comparable pipelines that exist today. In the case of Tormes,

the comparison highlights the benefit of having a parallel rather than sequential job

scheduling setup. In the case of Bactopia, it shows that other pipelines can approach the

scalability of CompareM2 but also that having a reads-based approach is not competitive

and that comparative analyses can be more integrated into the main pipeline. Also, we want

to highlight that Bactopia and Tormes are not the only tools relevant for comparison. As

CompareM2 sports many tools for advanced annotation, it also overlaps in use case with

more annotation-focused pipelines like DRAM12.

What is characteristic about CompareM2, is that it is assembly-agnostic: It works strictly

downstream of assembling and binning. It is a general-purpose pipeline that doesn’t

discriminate between genomes based on how they were assembled. Many other tools also

include all the steps necessary to turn raw reads into genome representatives and then do

varying degrees of biological characterization of these, but raw read-dependent tools were

deliberately left out of CompareM2. This is because read mapping, assembling, or even

binning are highly dependent on the sequencing technology used and require a highly

specialized pipeline for each technological use case. Next-generation sequencing has

matured, and many competitive sequencing platforms exist (sequencing-by-synthesis, single

molecule sequencing, etc.). Thus, designing a toolbox that can compare genomes is a very
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different discipline from designing a toolbox that can assemble these genomes in the first

place. Hard-linking two such pipelines together raises the concern that one part will not fit a

specific use case. CompareM2 takes a different approach which is to offer a platform where

you can compare your genomes regardless of how they were assembled.

Conclusions
CompareM2 offers an easy-to-install, user-friendly, and efficient genome annotation pipeline.

It can be launched using a single command and is scalable to a range of projects, from the

annotation of single genomes to comparisons across complex inventories. By using widely

adopted genome tools, CompareM2 performs key annotation steps including genome quality

control, predicted biological gene function, and taxonomic assignment. In addition,

comparative analyses like computation of core- and pan-genomes or phylogenetic relations

can be executed. We expect that CompareM2 will support the productivity of genome

researchers by simplifying and expediting the annotation and comparison of genome-centric

data. Further development of CompareM2 will continue with its ongoing adaptation to the

community consensus of microbial ecologists. Through benchmarking, we have shown that

CompareM2 is highly scalable, allowing analysis of large numbers of input genomes thanks

to its underlying parallel job scheduling provided by Snakemake. Via CompareM2 we seek to

accelerate and democratize the analysis of genomic assemblies for anyone who has

computational resources available—be that on HPCs, a workstation, or even a laptop.

Methods

Implementation of CompareM2

Snakemake

This section sketches the technical implementation of CompareM2 using Snakemake. For

more details on usage and modification of running parameters, please consult the

documentation at: https://comparem2.readthedocs.io .

CompareM2 is built on top of Snakemake13. This means that much of the functionality in it is

inherited by solutions within the Snakemake framework. A major upside of this is that

CompareM2 can make use of Snakemake’s extensive support for parallel job scheduling

and support for running on workload managers used on HPCs. CompareM2 has been tested

on Slurm14 and PBS15 workload managers. The CompareM2 executable, which is available

9
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on Bioconda, is run by the user and does some basic housekeeping: It sets up the

necessary environment variables like the base directory of the code, the Snakemake profile

that defines whether the jobs are being submitted to an HPC workload manager and whether

to use Conda or Docker/Apptainer as well as checking the database paths which are used

by some of the tools. Then, the main Snakemake workflow is launched on the input

genomes. By default CompareM2 accepts all fasta-formatted files available in the current

working directory, but a specific path of “input_genomes” can also be set. In the case of

analyzing large numbers of genomes, a “fofn” (file of file names) can also be used to define

the input genomes. Snakemake allows for running only specific wanted parts of the rule

graph (Fig. 2) and common parameters can be customized by the user. Because command

line arguments are passed on from the CompareM2 executable to the main Snakemake

workflow, the user has full access to control the main Snakemake workflow underneath.

Regardless of whether the user uses the precompiled Docker image that contains

environments for the included tools, the snakefile rules that govern how the specific tools are

called can still be fully modified.

Fig. 2: The underlying Snakemake workflow of CompareM2. A directed acyclic graph (DAG) that

shows the order in which to run rules that are dependent on each other. Each box represents a

Snakemake rule, which is a code template that can be used to process a sample or a batch of

samples. For instance, rule “prokka” is run on each input assembly, and then rule “panaroo” can

analyze all samples using this output. The start and end points for the complete pipeline are

represented by “copy” and “all”, respectively.

When the main workflow is completed, the CompareM2 executable checks that relevant

outputs exist, and in that case it calls the “dynamic report” sub pipeline. This pipeline is only

in charge of producing the portable graphical dynamic report document that contains the

main results of the main pipeline. When this report is rendered, the return code of the main

pipeline is returned by the CompareM2 executable. One of the main features of this dynamic

report is that it can produce a report from possibly incomplete results from the main pipeline.

In many cases, a job will fail; for instance an advanced annotator like Antismash16 will return
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a non-zero exit code and not produce any output files if no genes are annotated in a

genome. When this is the case, it is preferable that the rest of the main pipeline can continue

and that the dynamic report pipeline can be run on the remaining results, showing the

missing results. In a pipeline with this many moving parts, it is crucial that unaffected tools

can continue running if something breaks down. This graphical report is based on the R

Markdown17 document rendering framework. Statistics and plots are generated with

Tidyverse18.

Launching the pipeline is a single command and the user is only required to have minimal

experience with the command line interface for moving fasta genome files in and out of

directories. The minimal system requirements are Linux with a Conda-compatible package

manager. It is recommended that the system has Apptainer installed such that a Docker

image containing all necessary binaries can be automatically downloaded and installed.

Docker and downloads

As CompareM2 uses many independent tools for analysis, it is not feasible to have all

binaries in the same environment. The requirements for many different versions of the same

dependencies would quickly lead to dependency hell19. Instead, each tool is installed into its

own isolated environment. For a developmental installation of CompareM2, these isolated

Conda environments are automatically installed using the “use-conda” functionality from

Snakemake. In any other case when a user installs CompareM2 and has Apptainer (a

high-performance Docker-compatible runtime20), the “use-apptainer” system is activated and

a pre-compiled Docker21 image is automatically downloaded and used instead. It contains a

precompiled distribution of all Conda environments. Using this image is optional but highly

recommended as it avoids potential dependency issues for the user to deal with during

installation. Six of the bundled tools (Bakta, Busco, CheckM2, Dbcan, Eggnog, GTDB-Tk)

need databases to run. These databases are automatically downloaded by individual rules in

the Snakemake rule graph. CompareM2 only downloads these databases the first time a tool

is used.

Tools included

Many tools are included in CompareM2. Here we list which they are, what they do and

define the conditions in which they run.

The first step of the pipeline is to run all genomes through any2fasta22 which acts as input

validation and converts the input genome queries into a homogenized fasta format with a

uniform character set.
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Quality control is performed by assembly-stats8 and seqkit23 which both compute various

basic genome statistics like genome length, count and lengths of contigs, N50, GC, etc.

Busco24 and CheckM225 are run to compute the completeness and contamination

parameters of the input genomes.

The input genomes can be annotated with Prokka26 or Bakta27. As both of these annotators

produce results with a similar output structure, it is up to the user to decide which to use for

downstream analysis. The default is Prokka, which is also displayed in Fig. 2.

Advanced annotation is carried out with the following tools with their briefly stated functions:

Interproscan28 scans protein signature databases like PFAM, TIGRFAM, and HAMAP.

Dbcan29 scans carbohydrate active enzymes (cazymes). Eggnog-mapper30 provides

orthology-based functional annotations. Gapseq31 builds gapfilled genome scale metabolic

models (GEMs). Antismash16 finds biosynthetic gene clusters. Clusterprofiler32 computes a

pathway enrichment analysis. GTDB-Tk7 uses an alignment of ubiquitous proteins to predict

species names.

In a clinical setting, the following tools might be useful: Abricate33 scans the NCBI34, Card35,

Plasmidfinder36, and VFDB37 databases for antimicrobial resistance genes and virulence

factors. MLST38,39 calls multi-locus sequence types, is relevant for an initial grouping when

tracking transmission and spread of bacteria.

In terms of phylogenetic analysis: Mashtree40, which computes a neighbor-joined tree on the

basis of mash distances. Treecluster41 which based on customizable presets clusters the

mashtree tree. Panaroo9 produces a core genome suitable for phylogenetic analysis and

defines a pangenome. This core genome is used by the following tools: Fasttree42 computes

a neighbor joined tree. IQ-TREE43 computes a maximum-likelihood tree. Snp-dists44

computes the pairwise snp-distances.

The CompareM2 code base with its 1k source lines of code (SLOC), installation instructions,

and documentation are available in a Git repository currently hosted at GitHub:

https://github.com/cmkobel/comparem2. The code is published under the GNU Public

Licence version 3 which means that anyone who wishes to modify the software can do so if

attributing the original authors. If users come up with concrete modifications or extensions,

they are welcome to make a pull request on this repository.

Benchmarking

All running time analyses were run sequentially in random order on an AMD x86-64

“Threadripper Pro” 5995WX 64 cores, 8 memory channels, 512GiB DDR4 3200MHz ECC

12

CompareM2 is a genomes-to-report pipeline for comparing microbial genomes - Paper #2

109



(8x 64 GiB) and 4 2TB SSDs in raid0. All tests were run with three replicates. Electrical

power used consisted of 89% Hydroelectric, 11% wind45. The running time was reported by

the Snakemake benchmark function. We allowed each pipeline to use a maximum of 32

cores. Statistics and plots were generated using R46 v4.3.1 and Tidyverse18 v2.0.0. Scripts

used to compute the benchmarking results are provided at

https://github.com/cmkobel/cm2_benchmark .

Statistics of analyzed MAGs

Genome sizes were measured with assembly-stats v1.0.1. The MAGs were classified using

GTDB v2.3 using database release 214. MAGs from both compared genera

(Methanobrevibacter and Prevotella) were sourced from a project based on ONT R10.4 long

read sequencing of the rumen content of 24 male Bos taurus. These genomes are

accessible here: https://doi.org/10.6084/m9.figshare.26203361
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  »Home

CompareM2

build passing Bioconda downloads 1.3k docker pulls 97 docs passing conda | bioconda v2.11.1

DOI 10.1101/2024.07.12.603264 StarsStars 5454

 Note

If you're looking for the original version of CompareM, a tool to calculate AAI and
codon usage, please follow this link: github.com/donovan-h-parks/CompareM

🧬 CompareM2 is a genomes-to-report pipeline. It accepts prokaryo!c (bacterial and
archaeal) genomic assemblies and compares them in many different ways.

🦠 Being designed to analyze assemblies of both isolates and metagenomes (MAGs), it is
useful for anyone working with microbial genomics.

💾 Installing CompareM2 on your system gives you access to many powerful state-of-
the-art tools for analysis of prokaryo!c genomes which will accelerate your research. It is
easy to use and can be used by non-bioinforma!cians.

👩🔬 CompareM2 integrates several analyses that yield scien!fic results about genomic
assemblies on several levels: Quality control, annota!on, func!on and species calling as
well as compara!ve analyses like computa!on of core/pan genomes and phylogene!cs.

🐍 CompareM2 works by calling a Snakemake workflow that can be easily modified to
use different parameters for the underlying tools.

📄 Central results are dynamically integrated in a compact portable report .html-
document. It can be browsed in any web browser and can be easily shared as a single file.
This report is generated even if some jobs in the pipeline fail. See examples.

🧑💻 CompareM2 can be run either on a local worksta!on (recommended >= 64GiB RAM),
or a HPC (high performance compu!ng) cluster. Both Apptainer/Singularity/Docker
images and conda environment defini!ons are available for all dependent so#ware to
run.
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🙋 If you have any ques!ons, issues or ideas about using
CompareM2, please raise an issue here.

📙 The comprehensive documenta!on is available at
CompareM2.readthedocs.io. And the code base is
available at github.com/cmkobel/CompareM2.

CompareM2 genomes-to-report pipeline. Copyright (C)
2024 contributors GNU GPL v3.

Supplementary information - Paper #2

117



  »Installa!on

Installation

Install the bioconda package

It is recommended that you have Apptainer on your system as it
makes CompareM2 able to use a compressed Docker-image that
speeds up installa!on significantly.

First, you need to install a Conda or Mamba package manager. The
recommended choice is Miniforge which not only provides the
required Python and Conda commands, but also includes Mamba -
an extremely fast and robust replacement for the Conda package
manager which is highly recommended.

 Note

In case you don't use Miniforge you can always install Mamba into any other Conda-
based Python distribu!on with: conda install -n base -c conda-forge mamba

Finally, CompareM2 can be installed into its own environment with
the correct channels like so:

mamba create -c conda-forge -c bioconda -n comparem2 comparem2

Installing into isolated environments is best prac!ce in order to avoid side effects with
other packages.

 Note

If you want to develop new rules in the CompareM2 pipeline, you should consider
following the development version installa!on instruc!ons. The development version
contains the full git repository and is purely conda-based so you can affect the next
version of the Apptainer-compa!ble Docker image.
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Optionally: Testing the installation

Now you will be able to run CompareM2. You can use the example data in path "tests/
MAGs" to check that everything works. The first !me you run CompareM2 it will show
the message "Pulling singularity image docker://cmkobel/comparem2." This might take
some !me depending on your network bandwidth as it downloads a +4GB Docker image
that contains all the conda environments needed for each analysis.

# Activate the newly created conda environment containing the comparem2 launcher.
mamba activate comparem2

# First, create an empty directory and enter.
mkdir test_comparem2_install
cd test_comparem2_install

# Copy some test metagenomic assemblies from the test directory.
# cp $CONDA_PREFIX/share/comparem2-*/tests/E._faecium/*.fna . # Until v2.7.1 you must copy the .fna fi
unzip $CONDA_PREFIX/share/comparem2-*/tests/E._faecium/fna.zip # From 2.8.1

# Should take about a minute to complete the "fast" pseudo-rule.
comparem2 --until fast

# You can then investigate the report document that has been generated.
# open results_comparem2/report_test_comparem2_install.html

# Downloads all databases (~ 200 GB).
comparem2 --until downloads

# Run the full pipeline (~ 1 cpu-hour per genome).
comparem2

Advanced configuration

Shared database

If you are working on a shared computa!onal resource like a laboratory worksta!on or a
HPC you might want to share a database directory so that each user will not have to
redundantly download each database. To set this up, the first user must decide on a
directory and set reading and wri!ng permissions for the group of users that should be
able to use the database. Wri!ng permissions are necessary for the "database
representa!ve" flags that snakemake uses to keep track of the presence of the
databases. Se#ng this custom path is a ma$er of defining the
"COMPAREM2_DATABASES" environment variable. You can put this into your ~/.bashrc
or execute the command before using CompareM2.

export COMPAREM2_DATABASES="/absolute/path/to/shared_databases/comparem2_v2.5.8+"
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HPC profiles for Snakemake

If you have experience with snakemake and are working on a high performance
compu!ng cluster (HPC), you can modify and use the cluster configura!on profiles in the
"profiles/" directory. You can define the use of one of these profiles by se#ng the
"COMPAREM2_PROFILE" environment variable. You can put this into your ~/.bashrc or
execute the command before using CompareM2. You can read more about snakemake
profiles here or browse more default profiles here.

export COMPAREM2_PROFILE=${COMPAREM2_BASE}/profiles/apptainer/slurm-sigma2-saga

CompareM2 genomes-to-report pipeline. Copyright (C) 2024 contributors GNU GPL v3.
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  »Usage

Usage

Overall, CompareM2 follows standard command line prac!ces. CompareM2 is built on
top of Snakemake. Hence, when tweaking your run, you must pass the parameters
through the --config  key. Although all Snakemake op!ons are available to use, here we
bring the ones that are necessary and useful for daily-driving CompareM2.

comparem2 [ --config KEY=VALUE [KEY2=VALUE]... ]
  [ --until RULE [RULE2]... ]
  [ --forcerun RULE [RULE2]... ]
  [ --printshellcmds ]
  [ --dry-run ]
  [ --version ] [ --help ] [ --cite ]

Usage examples

• Run all analyses across all fasta files in the current working directory.

comparem2

• Run only jobs un!l prokka

comparem2 --until prokka

• Run all analyses with specified input and output.

comparem2 --config input_genomes="path/to/genomes_*.fna" 

output_directory="my_analysis"

• Use a fofn - a file of file names.

ls path/to/*.fna > my_fofn.txt; comparem2 --config fofn="my_fofn.txt"

• Run a dry run.

comparem2 --config input_genomes="path/to/genomes_*.fna" --dry-run

• Specify annotator. (default is "prokka")

comparem2 --config input_genomes="path/to/genomes_*.fna" annotator="bakta"

• Run only the fast rules. (read more about pseudo rules)
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comparem2 --config input_genomes="path/to/genomes_*.fna" annotator="bakta" --

until fast

• Run panaroo as well.

comparem2 --config input_genomes="path/to/genomes_*.fna" annotator="bakta" --

until fast panaroo

• And pass a command line argument directly to panaroo.

comparem2 --config input_genomes="path/to/genomes_*.fna" set_panaroo--

threshold=0.95 annotator="bakta" --until fast panaroo

Options

--config KEY=VALUE [KEY2=VALUE]...

Pass a parameter to the snakemake pipeline, where the following keys are available,
defaults are stated as standard.

• input_genomes="*.fna *.fa *.fasta *.fas"  Path to input genomes. As the default
value indicates, all fasta type files in the present directory will be analyzed.

• fofn="fofn.txt"  Deac!vated by default. When set to a path it overrides key
input_genomes. A fofn can be created with ls *.fna > fofn.txt

• output_directory="results_comparem2"  All results are wri"en here.
• annotator="prokka"  Choice of annota!on tool. Alterna!vely "bakta".

Passthrough arguments

From v2.8.2, CompareM2 has the ability to pass any command line argument (op!on-
parameter pair) through to any rule in the workflow. This is done by using a generalized
"passthrough argument" feature that recognizes config argument op!ons star!ng with
string "set_" and passes them to the correct rule upon genera!ng the shell scripts for
each rule in the workflow. The general syntax for these passthrough arguments is
set_<rule><option>=<parameter>  where rule is the rule name, op!on is the op!on key,

and parameter is the parameter value.

 Note

This feature requires modifica!on of Snakemake such that it can accept special
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characters through the config strings given at the command line. This modifica!on
can easily be done using the following command that ships with the bioconda
package: enable_passthrough_parameters_comparem2

Otherwise you might receive the Snakemake error: "Invalid config defini!on: Config
entry must start with a valid iden!fier."

An example can be used to explain how this feature can be used in prac!ce: Consider
using the Prokka annotator, which is capable of annota!ng both bacterial and archaeal
genomes. By default, Prokka is set to bacterial annota!on, so in case we want to
annotate an archaea, we can set the "--kingdom" argument to "archaea". In this case the
rule name is prokka , the op!on key is --kingdom  and the parameter value is archaea .
When using CompareM2, this se#ng can be set following the passthrough argument
syntax like so:

# comparem2 --until set_<rule><key>=<value> # Syntax template.
comparem2 --config set_prokka--kingdom=archaea

No!ce how the double dash prefix in "--kingdom" is part of the the set_ string. This is
because many different styles of command line argument op!ons need to be supported
(e.g.: "--command_key", "--command-key", "-command_key" etc).

In some cases, command line op!ons are flags, meaning that they need no parameter
value. In this case, an empty string can be given as parameter value:

comparem2 --config set_prokka--rfam="" # --rfam enables searching for ncRNAs with Infernal+Rfam.

In case of non-empty parameter values, use of apostrophes is op!onal.

Using a space separator, several command line arguments can be given at once for
several different tools. In the following example we're also loosening the Panaroo core
genome iden!ty "--threshold" op!on down to 95% to increase the apparent number of
genes in the core genome.

comparem2 --config set_prokka--kingdom=archaea set_panaroo--threshold=0.95 --until panaroo fast

CompareM2 comes with a number of sane default arguments which can be observed
here. Any passthrough argument that the user gives on the command line overwrites
these defaults.
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Validating command line arguments

There are no limita!ons on which command line arguments can be passed to the
passthrough argument feature. Thus, the user should follow the documenta!on of each
individual tool to make sure that the command line arguments given are valid. In order to
validate that the arguments given to rules are as expected, the full generated shell
command of each rule can be printed with -p . It is especially useful to do this in
conjunc!on with the --dry-run  argument. Example below:

comparem2 --config set_panaroo--threshold=0.99 --until panaroo -p --dry-run
#> [...] 
#>    panaroo \
#>        -o results_comparem2/panaroo \
#>        -t 16 \
#>        --clean-mode sensitive \
#>        --core_threshold 0.95 \
#>        --threshold 0.99 \
#> [...]

--until RULE [RULE2]...

Select to run up un!l and including a specific rule in the rule graph. Available rules:
abricate annotate an!smash assembly_stats bakta busco checkm2 copy dbcan eggnog
fas"ree gapseq gapseq_find gtdbtk interproscan iqtree kegg_pathway mashtree mlst
prokka sequence_lengths snp_dists treecluster an!smash_download bakta_download
busco_download checkm2_download dbcan_download eggnog_download
gtdb_download panaroo

There are also a number of pseudo rules, effec!vely "shortcuts" to a list of rules. -
downloads (Run rules that download and setup up necessary databases.) - fast (Only
rules that complete within a few seconds. Useful for tes!ng.) - isolate (Only rules that are
relevant for genomes of isolate origin.) - meta (Only rules that are relevant for genomes
"MAGs" of metagenomic origin.) - report (Re-renders the report.)

--forcerun RULE [RULE2]...

Force rerunning of one or more rules that already have been completed. This is generally
necessary when changing running parameters in the config (see "--config" above).

--printshellcmds , -p
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Print the full generated shell commands of each rule in the workflow.

--dry-run

Run a "dry run": Shows what will run without doing it.

--version , -v

Show current version.

--help , -h

Show this help and exit.

Environment variables

No environment variables are strictly necessary to set, but the following might be useful:

• COMPAREM2_PROFILE  (default "profile/apptainer/local") specifies which of the
Snakemake profiles to use. This can be useful for running CompareM2 on a HPC or
using specific se#ngs on a large worksta!on. Check out the bundled profiles in path
profile/* (possibly in $CONDA_PREFIX/comparem2/profile/*).

• COMPAREM2_DATABASES  (default "databases/") specifies a database loca!on. Useful
when sharing a database installa!on between various users on the same worksta!on
or HPC.

Output

CompareM2 creates a directory named "results_comparem2/" (or what the
output_directory parameter is set to) that contains all of the analysis results that are
computed.

Results from input genomes are in dir "samples/" and results across all samples are in the
root.
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The report is named "report_<!tle>.html" a%er the !tle of the run which defaults to the
name of the current working directory.

results_comparem2/
├── abricate/
├── assembly-stats/
├── benchmarks/
├── checkm2/
├── fasttree/
├── gtdbtk/
├── iqtree/
├── kegg_pathway/
├── mashtree/
├── metadata.tsv
├── mlst/
├── panaroo/
├── report_<title>.html
├── samples/
│  └── <sample>/
│     ├── antismash/
│     ├── bakta/
│     ├── busco/
│     ├── dbcan/
│     ├── eggnog/
│     ├── <sample>.fna
│     ├── interproscan/
│     ├── prokka/
│     └── sequence_lengths/
├── snp-dists/
├── tables/
├── treecluster/
└── version_info.txt

For the file tree of each of the analysis tools, please consult the respec!ve
documenta!on.
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  »What analyses does it do?

What analyses does it do?

Below is the graph the shows the order of execu!on of all possible analyses "rules" in
CompareM2:

This figure does not show the pseudo rules such as meta , isolate , fast , etc.

 Hint

Use comparem2 --until <rule> [<another rule>...]  to run one or several specific
analyses only. The rule names for each analysis to pick is listed below:

For each sample

First, independent analyses are run on each of the input genomic assembly files.

• sequence_lengths seqkit Lengths and GC-content of individual con!gs.
• assembly_stats assembly-stats Generic assembly sta!s!cs.
• busco BUSCO Es!mate assembly completeness and contamina!on.
• checkm2 CheckM2 Es!mate assembly completeness and contamina!on.
• prokka prokka Genomic annota!on of Archaea and Bacteria.
• bakta bakta Genomic annota!on of Bacteria (lacking in report, but used

downstream by other tools).
• kegg_pathway clusterProfiler KEGG ortholog-based pathway enrichment analysis.
• dbcan dbCAN4 Annota!on of carbohydrate-ac!ve "CAZyme" enzymes (lacking in
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report).
• antismash an!smash Detec!on of biosynthesis genes (lacking in report).
• eggnog eggnog-mapper Func!onal annota!on.
• interproscan InterProScan Protein func!on using Tigrfam, Hamap and Pfam (lacking

in report).
• abricate abricate Virulence and resistance gene iden!fica!on.
• mlst mlst Mul! locus sequence typing.
• gtdbtk GTDB-tk Species recogni!on.

Across samples

Then on the basis of the analysis of each input genomic assembly, these analyses are run
across all samples.

• panaroo panaroo Pan and core genome.
• snp_dists snp-dists Core genome pairwise snp-distances.
• fasttree FastTree Phylogene!c tree of the core genome.
• iqtree IQ-tree Phylogene!c Tree of core genome with bootstrapping (lacking in

report).
• mashtree Mashtree Super fast distance measurement
• treecluster TreeCluster Clustering of phylogene!c trees (lacking in report).
• A nice report easy to share with your friends (See demos below)

Pseudo-rules

There are also a few pseudo targets defined. For instance fast  which runs
sequence_lengths, assembly-stats and mashtree. There is also one named isolate
which runs all the analyses that are relevant for clinical isolates (sequence_lengths,
prokka, mlst, abricate, assembly-stats, gtdbtk, busco, checkm2, roary, snp-dists, fas"ree,
mashtree) as well as one named meta  which runs the analyses that are relevant to
metagenomes (aka. MAGs), these are sequence_lengths, prokka, gtdbtk, busco, checkm2,
mashtree.

 Hint

You can run one of these pseudorules just like any other rulename with comparem2 --
until meta  or comparem2 --until isolate
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Rendered report

These demo reports are available for inspira!on while you wait for your own report to
complete.

• report_strachan_campylo.html

32 Campylobacter genomes, Metagenome and genome sequencing from the rumen
epithelial wall of dairy ca"le. From Nature 2022 - Strachan et al. (doi.org/10.1038/
s41564-022-01300-y).

• report_Methanoflorens.html

6 Methanoflorens (archaeal) genomes. Representants of Bog-38 which are part of
GTDB.

CompareM2 genomes-to-report pipeline. Copyright (C) 2024 contributors GNU GPL v3.
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  »Future func!onality

Future functionality

In the future we might add some of the following so"ware packages into CompareM2.
This document serves as a backlog of tools that we want to integrate when !me allows.

Assembly basis (within each sample)

• AlphaFold Neural network protein folding predic!on genome annota!on.
• Integra!on of the DRAM databases for easier metabolic interpreta!on.
• Oriloc Iden!fica!on of possible replica!on origins of chromids.
• RFplasmid Iden!fica!on of plasmids using the pentamer-random-forest method.
• Kap!ve Iden!fica!on of surface polysaccharide loci for Klebsiella and Acinetobacter

baumannii.
• AMRFinderPlus Iden!fica!on of AMR genes and their point muta!ons.
• gapseq GEMs, pathway completeness and much more.

Batch basis (across all samples)

• GC3-profiling "fingerprin!ng" of the distribu!on of GC-content.
• Recombina!on in core genome using the Bruen's PHI sta!s!c or ClonalFrameML.
• Iden!fica!on of horizontally transferred genes?

Please add an issue on the repository if you have any ideas or requests.
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  »Contributors

Contributors

Contributors of the CompareM2 code base

• Carl Mathias Kobel (@cmkobel)
• Oliver Kjærlund Hansen (@OliverKjHansen)
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  »Ci!ng and alterna!ves

Citing and alternatives

Citing CompareM2

If you use CompareM2, you can support further funding by bumping the cita!on count
on this one:

• Kobel, C. M. et al. CompareM2 is a genomes-to-report pipeline for comparing
microbial genomes. 2024.07.12.603264 Preprint at h"ps://
doi.org/10.1101/2024.07.12.603264 (2024).

References for the included tools

CompareM2 would not have existed, if it hadn't been for the integrated so#ware
packages and their databases. Please reach out to carl.mathias.kobel near nmbu.no if you
think something is missing.

• Bacterial An!microbial Resistance Reference Gene ... (ID 313047) - BioProject -
NCBI. h"ps://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047.

• Bakta: rapid and standardized annota!on of bacterial genomes via alignment-free
sequence iden!fica!on | Microbiology Society. h"ps://
www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.000685.

• Balaban, M., Moshiri, N., Mai, U., Jia, X. & Mirarab, S. TreeCluster: Clustering
biological sequences using phylogene!c trees. PLOS ONE 14, e0221068 (2019).

• Baumer, B. & Udwin, D. R Markdown. WIREs Comput. Stat. 7, 167–177 (2015).
• Blin, K. et al. an!SMASH 7.0: new and improved predic!ons for detec!on, regula!on,

chemical structures and visualisa!on. Nucleic Acids Res. 51, W46–W50 (2023).
• Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J.

eggNOG-mapper v2: Func!onal Annota!on, Orthology Assignments, and Domain
Predic!on at the Metagenomic Scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

• Cara"oli, A. & Hasman, H. PlasmidFinder and In Silico pMLST: Iden!fica!on and
Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). in Horizontal
Gene Transfer: Methods and Protocols (ed. de la Cruz, F.) 285–294 (Springer US, New
York, NY, 2020). doi:10.1007/978-1-4939-9877-7_20.
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• Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory
friendly classifica!on with the genome taxonomy database. Bioinforma!cs 38, 5315–
5316 (2022).

• Chklovski, A., Parks, D. H., Woodcro#, B. J. & Tyson, G. W. CheckM2: a rapid, scalable
and accurate tool for assessing microbial genome quality using machine learning. Nat.
Methods 20, 1203–1212 (2023).

• Dykstra, D. Apptainer Without Setuid. EPJ Web Conf. 295, 07005 (2024).
• Je"e, M. A. & Wickberg, T. Architecture of the Slurm Workload Manager. in Job

Scheduling Strategies for Parallel Processing (eds. Klusáček, D., Corbalán, J. &
Rodrigo, G. P.) 3–23 (Springer Nature Switzerland, Cham, 2023).
doi:10.1007/978-3-031-43943-8_1.

• Jolley, K. A. & Maiden, M. C. BIGSdb: Scalable analysis of bacterial genome varia!on
at the popula!on level. BMC Bioinforma!cs 11, 595 (2010).

• Katz, L. S. et al. Mashtree: a rapid comparison of whole genome sequence files. J.
Open Source So#w. 4, 1762 (2019).

• Liu, B., Zheng, D., Zhou, S., Chen, L. & Yang, J. VFDB 2022: a general classifica!on
scheme for bacterial virulence factors. Nucleic Acids Res. 50, D912–D917 (2022).

• Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO Update:
Novel and Streamlined Workflows along with Broader and Deeper Phylogene!c
Coverage for Scoring of Eukaryo!c, Prokaryo!c, and Viral Genomes. Mol. Biol. Evol.
38, 4647–4654 (2021).

• Miell, I. & Sayers, A. Docker in Prac!ce, Second Edi!on. (Simon and Schuster, 2019).
• Minh, B. Q. et al. IQ-TREE 2: New Models and Efficient Methods for Phylogene!c

Inference in the Genomic Era. Mol. Biol. Evol. 37, 1530–1534 (2020).
• Mölder, F. et al. Sustainable data analysis with Snakemake. Preprint at h"ps://

doi.org/10.12688/f1000research.29032.2 (2021).
• Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis.

Bioinforma!cs 31, 3691–3693 (2015).
• Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-

Likelihood Trees for Large Alignments. PLOS ONE 5, e9490 (2010).
• sanger-pathogens/assembly-stats. Pathogen Informa!cs, Wellcome Sanger Ins!tute

(2024).
• Seemann, T. Prokka: rapid prokaryo!c genome annota!on. Bioinforma!cs 30, 2068–

2069 (2014).
• Seemann, T. tseemann/abricate. (2024).
• Seemann, T. tseemann/any2fasta. (2024).
• Seemann, T. tseemann/mlst. (2024).
• Seemann, T. tseemann/snp-dists. (2024).
• SeqKit2: A Swiss army knife for sequence and alignment processing - Shen - iMeta -
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Wiley Online Library. h"ps://onlinelibrary.wiley.com/doi/10.1002/imt2.191.
• Smith, K. W. et al. A standardized nomenclature for resistance-modifying agents in

the Comprehensive An!bio!c Resistance Database. Microbiol. Spectr. 11, e0274423
(2023).

• Tonkin-Hill, G. et al. Producing polished prokaryo!c pangenomes with the Panaroo
pipeline. Genome Biol. 21, 180 (2020).

• Wickham, H. et al. Welcome to the Tidyverse. J. Open Source So#w. 4, 1686 (2019).
• Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpre!ng omics

data. The Innova!on 2, 100141 (2021).
• Yin, Y. et al. dbCAN: a web resource for automated carbohydrate-ac!ve enzyme

annota!on. Nucleic Acids Res. 40, W445–W451 (2012).
• Zdobnov, E. M. & Apweiler, R. InterProScan – an integra!on pla&orm for the

signature-recogni!on methods in InterPro. Bioinforma!cs 17, 847–848 (2001).
• Zimmermann, J., Kaleta, C. & Waschina, S. gapseq: informed predic!on of bacterial

metabolic pathways and reconstruc!on of accurate metabolic models. Genome Biol.
22, 81 (2021).

Alternative tools

What is unique about CompareM2 is that it works strictly downstream of assembling and
binning. Many other tools also include all the steps necessary to turn raw reads into
genome representa!ves, and then does varying degrees of biological characteriza!on of
these freshly created assemblies/bins/genomes. It is a conscious decision to exclude the
raw read-dependent tools out of the equa!on for CompareM2. This is because read-
mapping, assembling or even binning is highly dependent on the sequencing technology
used and requires a highly specialized pipeline for each technological use case.
CompareM2 takes a different approach which is to offer a portable and flexible pla&orm
where you can easily compare your genomes, no ma"er where they came from,
regardless of the sequencing technology used to create them in the first place. Genome
quality is only increasing and in the future we will not have to be worried when
comparing pyrosequencing and single-molecule sequencing or hybrid approach based
genomes in a single batch of CompareM2.

Below we are lis!ng some compe!ng pipelines that partly overlap with the use cases of
CompareM2. Sorted alphabe!cally.

• Anvi'o
• ASA³P
• Aviary
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• Bactopia
• DRAM
• Nullarbor
• Tormes
• VEBA

CompareM2 genomes-to-report pipeline. Copyright (C) 2024 contributors GNU GPL v3.
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Integrating host and microbiome biology using
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Holo-omics is the use of omics data to study a host and its inherent microbiomes – a biological system

known as a ‘‘holobiont’’. A microbiome that exists in such a space often encounters habitat stability

and in return provides metabolic capacities that can benefit their host. Here we present an overview of

beneficial host–microbiome systems and propose and discuss several methodological frameworks that

can be used to investigate the intricacies of the many as yet undefined host–microbiome interactions

that influence holobiont homeostasis. While this is an emerging field, we anticipate that ongoing metho-

dological advancements will enhance the biological resolution that is necessary to improve our under-

standing of host–microbiome interplay to make meaningful interpretations and biotechnological

applications.

Introduction
Overview and potential of holo-omics

In many biological systems and environments, both the host
and its resident microbiomes are considered as important

contributors to the total function of the overall system.1 To
study the biology of a living system, scientists regularly perform
‘‘omics’’ analyses of the various biomacromolecules that con-
stitute a living cell, such as DNA, RNA, proteins, and metabo-
lites (Table 1, Fig. 1).2 Analysis of these different ‘‘layers’’ can be
further empowered when performed in combination, an
approach referred to as ‘‘multi-omics’’. The concept of ‘‘holo-
omics’’ represents an additional thematic shift whereby instead
of focusing on molecular details of an individual organism or
an isolated reaction in a specific environment, we can consider
the biology of a host–microbiome system as a single unit of
action. This makes it possible to understand overarching
phenomena in the holobiont.3 In this context, the objective of

a Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.

E-mail: velma.tea.essi.aho@nmbu.no
b Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of

Life Sciences, Ås, Norway
c Faculty of Natural Sciences, Norwegian University of Science and Technology,

Trondheim, Norway
d Centre for Microbiome Research, School of Biomedical Sciences, Queensland

University of Technology (QUT), Translational Research Institute, Woolloongabba,

Queensland, Australia

Carl M. Kobel

Carl is a bioinformatician and a
PhD candidate in the MEMO
group at NMBU, Norway. Carl’s
perspective is that microbiomes
are largely undervalued and that
we should better understand the
minute interactions within them.
Carl adopts a big data inspired
approach, enjoys tinkering with
hardware, and building paral-
lelizable bioinformatics pipelines
to gain insights into large micro-
biome datasets. Jenny Merkesvik

Jenny is a PhD candidate in the
Bioinformatics and Applied Statis-
tics group at NMBU. She is part
of 3D’omics, a European Union
Horizon 2020 project in which
she contributes to increase our
understanding of host-micro-
biome interplay through holo-
omics. Her work is motivated by
the aim of improving animal and
feed production, benefitting both
the animals and the growing
human population, in a sustain-
able way.

Received 1st February 2024,
Accepted 10th June 2024

DOI: 10.1039/d4mo00017j

rsc.li/molomics

Molecular
Omics

REVIEW

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

1/
5/

20
24

 1
:4

8:
31

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

C. M. Kobel | PhD thesis 2025

138



This journal is © The Royal Society of Chemistry 2024 Mol. Omics, 2024, 20, 438–452 |  439

holo-omics is to study biomacromolecules that constitute bio-
logical interactions between a host and its microbiome (Fig. 1).

Acquiring a dataset to study host–microbiome interactions
is a matter of applying various omics technologies to measure

Table 1 Glossary

Term Definition

Habitat A defined ecological niche that provides environmental parameters that supports a set of organisms.
Holo- From Ancient Greek ‘óloB: hólos, ‘‘whole’’.
Holo-omics Research that analyses one or more functional layers of omics data from both host and microbiome. The terms holo-omics

and hologenomics might be used interchangeably because most omics layers arise from genomic DNA.
Holobiont An ecological unit consisting of a host and its resident, interacting micro-organisms.
Host–microbiome
interface

Any surface where biological features from either host or microbiome can interact.

Integrative analysis Overlapping or relating the biological factors between two molecular layers or host–microbiome sources.
Metagenomics Techniques used to study the collective genomic reads from all organisms in an ecological niche.
Multi-omics Research covering more than one omics layer representing one or multiple interacting organisms. Examples of the former

include human multi-omics with measurements that only reflect human biology; and microbial multi-omics without
taking the host into account.

Omics The study of all biomolecules of a specific type. This review focuses on functional omics data, which can be defined as
omics data that change over time and across conditions.

Proteomics Using a bespoke database which is based on in silico translation of the genomic sequences, to match mass spectrometric
spectra to measure the abundance of proteins in a sample.

Transcriptomics Techniques used to study an organism’s transcriptome, i.e. the sum of all of its RNA transcripts.
Untargeted
metabolomics

Using methods such as mass spectrometry (MS) or nuclear magnetic resonance (NMR) to measure the abundance of all the
metabolites in a sample.
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the molecular features of both sides of the holobiont. While
this data acquisition used to be the limiting step in such
analyses, modern molecular biology tools are making this
process more efficient and economical. Today’s primary tech-
nical bottlenecks are (1) overcoming microbial community
complexity, which can contain thousands of different genomes
compared to their singular defined host, and (2) the computa-
tional analysis of holo-omic data so that the biological pro-
cesses of both the host and its microbiome can be integrated
computationally, interpreted, and visualised.7 For example,
performing data integration across the host–microbiome inter-
face requires correlating individual biological features across
various omics layers, which often cannot be scaled to the typical
size of holo-omic datasets and can also suffer due to insuffi-
cient statistical power. To meet this challenge a new family of
computational tools is needed: they must be able to cluster
biological features into modules and cross-correlate features
across the host–microbiome boundary, capturing the signals
that represent the hypothesised cooperation between the host
and its microbiome.

Symbiotic interactions in host-associated microbiomes are
generally defined by the mutualistic, commensalistic or neutral
effects shared between each organism, which depend on
whether the benefit involved is one-way, two-way or lacking,
respectively.8 Additionally, there is a spectrum of harmful-
neutral interactions within the microbiome and between cer-
tain microorganisms, and opportunistic pathogens, viruses,
and phages might play a role in defining the dynamics of the
microbiome.9 Additional layers of intra-microbiome complexity
should also be considered, particularly for the existence
of networks of symbioses within a given microbiome which
can be characterised in isolation, as with any other microbial

environment. What distinguishes holo-omics is that the host
variation is integrated together with any intra-microbiome
relationships. Subsequently, holo-omics makes it possible to
understand the intra-microbiome dynamics where a host-
directed interaction is imposed on the microbiome.

For this review, we discuss in detail how actual holo-omic
analyses can be performed computationally and present several
frameworks to take the typically massive and complex holo-
omic datasets and integrate the signal between the host and its
microbiome. We consider host–microbiome studies where the
host is a multicellular organism like an animal, fungus, or
plant that forms a large surface or boundary from which it can
interact with the microbiome that typically consists of a com-
munity of single-celled microorganisms (bacteria, archaea,
eukaryotes) and possibly viruses, with varying degrees of diver-
sity (Table 2). For simplicity, we do not consider parasite
interactions in this review but focus on the beneficial interac-
tions in holobionts.

Many known hosts are obligate symbionts, meaning the
host is non-viable when the microbiome is absent. One exam-
ple of an obligate holobiont is lichen, where a fungus and a
community of cyanobacteria represent a complete holobiont.
The fungus provides physical anchoring and nutrient assimila-
tion whereas the cyanobacteria provide carbohydrates assimi-
lated through photosynthesis. Additionally, these holobionts
may house Alphaproteobacteria which work in conjunction to
fix nitrogen for the lichen, which may otherwise be nutrient-
limited.30 On the other end of the spectrum of dependency are
several types of insects, such as ants and caterpillars, which
harbour few or no resident microorganisms that are unlikely to
have a large impact on fitness.31 Mammalian hosts tend to
fall between these two extreme examples: they are viable when

Fig. 1 Holo-omics is a specialised case of multi-omics where biological features are linked across a host–microbiome interface. (A) This interface is
idealised along the horizontal axis labelled ‘‘holo-omic’’ as an epithelium with a large surface area where biochemical compounds can be exchanged in
both directions. The vertical axis labelled ‘‘multi-omic’’ highlights that interactions can occur on multiple levels in terms of coding sequences and
biochemical compounds. (B) Examples of molecular interactions across a host–microbiome interface.4–6 Created with biorender.com.
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raised in a germ-free setting, but experimental results suggest
various abnormalities in such animals, ranging from changes
in the immune system to altered neurodevelopment and
behavior.32,33

Host–microbiome orchestration

The holobiont represents an evolutionary shortcut where the
host and microbiome partners together orchestrate a metabolic
capacity34,35 that otherwise would have had to develop using
horizontal gene transfer and recombination via sexual repro-
duction within the genome of the host organism itself.36 In the
holobiont perspective, the host provides a habitat for its
associated microbiomes with defined and stable ecological
factors, such as the presence or gradients of substrates and
environmental factors like oxygen, temperature, and H+

concentration.37 In return, the microbiome provides complex
biochemicals that the host otherwise would not have been able
to synthesise or assimilate. In this context, host-directed inter-
nal environmental factors provide the selective pressure
that defines which microorganisms are ultimately present.38

However, many microorganisms, mainly prokaryotes, utilise
promiscuous mechanisms for horizontal gene transfer. This
gives them the ability to collect mobile and novel genetic
elements from diverse sources such as viruses, and alternative
genealogies across domains of life.39 Mechanisms that enable
the rapid evolution of microorganisms facilitate their competi-
tive metabolic potential to assimilate both energy and nutrients
from a spectrum of ecological niches. A host that has co-evolved
with its microbiome can leverage its microbiome-based meta-
bolic potential flexibility to adapt and thrive in niches that the
host would have been unlikely to enter on its own.

The microbiomes of holobionts are per definition not
mediated through the somatic genome of the host which
means that the microbiota must have its own way of transmit-
ting genetic material to offspring or between individuals in a
population. This means that the composition of species present
in a microbiome is subject to change over time as new species
colonise and take over functions of others.40 Host–microbiome
co-evolution and adaptation is possible when new microbiota

become part of the holobiont in a population of hosts, and are
inherited vertically to offspring or between individuals in a host
population. This can give rise to endemic microbiota species
which are exclusively found as part of a holobiont. The micro-
organisms can adapt to their host and thus diverge from their
ancestral population. Hosts and microbiota are able to co-adapt
evolutionarily which means that they can each specialise
and optimise their function in the holobiont system over
generations.41,42

Idealised biological frameworks of holo-omic models

Studying holobiont systems using holo-omics generally requires a
statistical or mechanistic framework that can capture signals or
patterns in the data to infer interacting biomacromolecules or
biological features across the host and its microbiome.43 When
analysing holo-omic data, its size and complexity usually means it
must first be constrained by dimensionality reduction or compres-
sion, or by clustering into modular groups of co-abundant biolo-
gical features. This is to make the computational analysis tractable
and to simplify the interpretation of its function. Therefore, it is
necessary that the methodological framework chosen to perform
this data constraining is able to capture the hypothesised inter-
action between the host and microbiome.

Most frameworks are statistical in the sense that they test
whether there are significant differences between treatments or
co-appearing groups, but suitable mechanistic models are
increasingly available and used for data integration as well.43

To integrate omics data, these mechanistic models should
ideally account for the dynamics of all relevant genome-scale
networks in the holobiont system, but scaling to systems of this
size entails major computational challenges for dynamic
models in particular.44 Because of this, mechanistic omics
integration studies have mainly used genome-scale metabolic
models (GEMs), which capture the steady-state flows of meta-
bolites through an organism’s network of biochemical reactions45

and are available for a range of hosts and microorganisms.46

By linking metabolic flows to interactions between host
and microbiome, GEMs integrated with holo-omics can allow
mechanistic investigation of holobiont systems. Dynamic modelling

Table 2 Selected examples of host–microbiome systems and their characteristics in terms of symbiotic benefit, dependency, species richness, and
services exchanged between host and microbiome. These definitions depend on the ecological circumstances in which each host–microbiome system
was considered

Holobiont
system Symbiosis Microbiome richness

Host - micro-
biome services Microbiome - host services

Cattle
rumen

Mutualistic8,10 8500–16 994 prokaryotic species,11,12 52
alveolata,13 12 fungi14

Habitat,
substrates15

Catabolism of complex plant fibres,15 anabo-
lism of essential chemicals

Mouse gut Mutualistic16 828–1573 species17,18 Habitat, substrates Catabolism of feed matter, anabolism of
essential chemicals16,19

Salmon gut Commensalistic 30–40 species (prokaryotes)20 Habitat, substrates Unknown

Plant
root-soil

Mutualistic,
commensalistic21

2799–271 940 species22,23 Energy (sugars,
fibres)24

Nutrients, nitrogen,25 stress resistance21

Bee gut Mutualistic o10 species26–28 Habitat, substrates Modulate social behaviour,29 catabolism of
carbohydrates28
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of genome-scale interaction networks is also becoming feasible
thanks to algorithmic and computational advances,47 but most of
the methods that we will discuss here take a statistical approach
where they compare and compute significance between groups.

Examples of recent publications with a holo-omics approach

Since the rise of modern molecular biology tools that have
facilitated holo-omic analyses, the number of publications
focusing on host–microbiome interactions has been growing.
For the purposes of this review, we are particularly interested in
studies that include an integrative analysis of two or more omic
datasets and discuss both the host and its associated microbiome.

Recent holo-omic research articles provide examples of the
different types of questions that can be approached from a
holo-omics point of view, ranging from experiments with model
organisms to comparative evolutionary studies. In the classic
experimental end of the spectrum, two studies used a mouse
model to address two ‘‘epidemics’’ faced by human medicine:
opioid overuse48 and obesity.49 Both studies included host trans-
criptomics, microbial shotgun metagenomics, and untargeted
metabolomics, the latter capturing a mix of molecules produced
by the host and the microbiome. Their results suggested that the
tested medications – morphine in the opioid study, the antidia-
betic drug empagliflozin in the obesity study – had effects on the
host and microbial layers.48,49 Both studies further confirmed that
there are correlations between different omic layers, offering the
simplest kind of evidence for host–microbiome interactions. The
opioid study also tested this experimentally by showing that
morphine-induced changes in host gene expression vary depend-
ing on the presence of a microbiome.48

In an example closer to traditional ecology, a study focusing
on the gut of the termite Labiotermes labralis used metage-
nomics, metatranscriptomics, and host transcriptomics data to
demonstrate that the host and the microbiome provide com-
plementary sets of carbohydrate-active enzymes, enabling the
holobiont to degrade a wide range of soil polysaccharides.50

Finally, a study taking a holo-omics approach to evolution
compared several ant- and termite-eating mammals, with findings
that supported convergent evolution not only in host genomes,
but also in microbiomes.51 Specifically, the gut metagenomes of
these mammals were enriched in enzymes that are necessary for
subsisting on an insectivorous diet, such as chitinases and
trehalases, compared to mammals with other types of diets.

While the existing publications showcase the exciting oppor-
tunities offered by holo-omic research, many of them include
only one omics layer for each side of the holobiont. Compre-
hensive, multi-layered integrative studies remain rare, partly
due to financial limitations, but also to the challenges pre-
sented by bioinformatic and statistical analyses.

State of the art in integrative models
Considerations for holo-omics tools

Although the cost of generating omics data has come down
considerably in recent years, it is still a major undertaking to

run controlled animal experiments to obtain matching samples
from hosts and microbiomes. As a consequence, holo-omic
studies typically tend to have small sample sizes. At the same
time, the number of measured biological features (genes,
proteins, metabolites) may reach millions, considering that
complex microbial communities contain hundreds of species.

Let us consider a hypothetical holo-omic study, where we
have measured the host transcriptome of the liver in 100 cows
(n = 100) and the meta-transcriptome of the rumen content in
those same individuals (p = 20 000 host genes + average 3000
microbial genes� 200 microbial species = 620 000 features). Let
us further assume that the experiment is set up to measure
methane emission, and that half of the cows were given a
methane-inhibiting feed additive (treatment) that indeed
reduced emissions. This dataset would pose a massive chal-
lenge for data analysis, and not primarily because it would
require considerable computational resources to assemble and
annotate Metagenome Assembled Genomes (MAGs) and esti-
mate expression (read mapping). The main challenge is related
to the large number of features compared to samples. Naively
one would think that this dataset could be analysed using
multivariate- or machine learning-based prediction methods,
where the predictive model could be queried for features or
combination of features that contributed significantly to
the prediction; ‘‘IF gene G on MAG5 is up AND host gene H
is down THEN low methane’’. However, with this many features
there will be an enormous number of feature combinations that
could separate low and high emitting cows, and with only
100 examples (cows) to constrain them, we would never be able
to discern real biological feature-combinations from spurious
ones (Fig. 2). This phenomenon is referred to as overfitting and
is a consequence of the curse of dimensionality: the number of

Fig. 2 Illustrating a common problem in multi-omics and holo-omics
where a low number of samples with a high number of features are linked
into a low number of traits (methane). The underlying data is arbitrary and
represents a single omics layer. Created with biorender.com.
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examples (cows) needed to identify the biologically meaningful
features grows exponentially with the number of features.

Methods that divide the aforementioned examples into
training and test sets, such as cross validation, would be able
to tell us that we are overfitting, but will not be able to solve the
problem. Even testing one feature at a time is problematic,
since multiple hypothesis testing would severely limit the
statistical power and thus only identify features with very large
and consistent differences (i.e. large effect sizes) between the
two treatments. Luckily, omics features are by no means
independent and can be grouped into modules of co-abun-
dant genes, proteins, or metabolites, for instance by correla-
tion. This and other so-called dimensionality reduction
approaches typically result in a few dozen distinct modules
that can be used as our new features to reveal connections to
methane emission and also to hypothesise putative interac-
tions between host and microbiome. A note of caution here is
that methods for module finding that rely on computing a
distance matrix would require extreme amounts of memory.
An approach used for instance by weighted gene co-expression
network analysis (WGCNA, a method discussed later in this
review) is to first group the data into ‘‘blocks’’ using k-means
clustering, find modules in each group, and then combine
similar modules at the end.

Integrating several omics datasets for a multi-omics
approach can help us hone in on biologically meaningful
patterns, if done carefully. Assuming that we added metabolo-
mics data to the aforementioned cow example; simply conca-
tenating the transcriptomics and metabolomics table would
leave us with even more features (number of genes + number of
metabolites). Instead, one could first identify genes and meta-
bolites that are differentially abundant between ‘‘low’’ and
‘‘high’’ methane-emitting cows, and then select pathways that
are enriched in both differential genes and differential meta-
bolites. Such consensus integration methods use information
about multiple types of molecules to constrain the number of
possible biological interpretations.

Although there are strong functional interdependencies
between rumen microbes converting feed into fatty acids and
the host animal metabolizing fatty acids in the liver to produce
energy, there are also clear physical boundaries separating
these features, meaning that we should consider omic data
origins in our holo-omic analysis design. In the case of pathway
analysis, for example, one needs to consider that a pathway
operates within the confines of a cell of a single organism. More
generally, most integration methods are designed for a single
species, and thus cannot be applied directly in a holo-omics
setting. Any pattern discovered in omics data with the aim of
describing host-microbiota interactions must include bioma-
cromolecules originating from both sides of the holobiont
boundary. This might be accomplished by first applying a
standard (multi-)omics analysis method and then filtering the
results afterwards, e.g. selecting modules containing genes
from both the host and the microbiota. However, integrating
the host-microbiota constraint as an integral part of the data
analysis method could drastically reduce the search space, help

deal with the curse of dimensionality and force results to
include features from the host that might otherwise drown in
the sea of microbial features. The methods described below are
selected because we find them especially promising for solving
challenges related specifically to holo-omics data sets.

Existing methodological frameworks and tools

Dimensionality reduction. The genetic repertoire of the host
and its microbiomes captured by holo-omic data introduces
complexities such as data sparsity, sampling variation, ecolo-
gical differences, and host-specific genetic makeup. Further-
more, distinguishing between free-living and host-associated
entities adds another layer of complexity. Since the number of
biological features always surpasses the number of observa-
tions in holo-omic studies, dimensionality reduction is crucial
to create human-interpretable visualisations to explore hidden
structures and patterns, and prevent model overfitting.52 Super-
vised dimensionality reduction – such as partial least squares
discriminant analysis – relies on class labels or response
variables to guide the dimensionality reduction process.
However, such methods struggle when sample sizes are much
smaller than the number of features. On the other hand,
unsupervised dimensionality reduction like including matrix
factorization and neighbour graph methods, allow discovery of
structures in the data without relying on class labels or
response variables.52 Methods that find a few dimensions that
are likely to be intrinsic come in two flavours; methods that
identify a subset of relevant original features (feature selection),
and methods that create new features by combining the origi-
nal features (feature extraction). Feature extraction methods
such as principal component analysis (PCA) (Fig. 3) and single
value decomposition utilise variation preservation techniques
to extract new features – so-called principal components – that
are linear combinations of the original features. Principal
components are commonly used for visualising clustering
patterns and interpreting sample separation.53

Canonical correlation analysis (CCA) is a statistical techni-
que akin to PCA in terms of finding a linear transformation of
the original variables that consists of orthogonal vectors.54 The
objective of CCA is to summarise the linear relationship
between two sets of variables by identifying linear combina-
tions – called canonical variables – that maximise correlations
based on pairs of loading vectors. Although CCA is not primar-
ily designed for dimensionality reduction, it plays a crucial role
in comprehending multivariate relationships by revealing the
directions in which two sets of variables are most interdepen-
dent. Several extensions of CCA further enhance its applicabil-
ity: (i) multiset CCAs analyse maximal correlations across
multiple sets of omics data; (ii) sparse CCAs identify a subset
of variables most relevant to the canonical variables by intro-
ducing sparsity constraints; (iii) regularised CCAs incorporate
regularisation which is particularly beneficial when dealing
with high-dimensional data or when variables are not well-
captured by linear transformations; and (iv) partial least
squares CCAs which focus on predicting one set of variables
using another, thus combining aspects of partial least squares
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regression with CCA.55 These extensions cater to diverse sce-
narios, offering flexibility to address specific challenges in
multivariate analysis and canonical correlation.

Principal coordinates analysis (PCoA) is a linear transforma-
tion method similar to PCA which incorporates multidimen-
sional scaling, creating dissimilarity matrices to visualise
sample relationships.56 Unlike PCA, PCoA is not limited to
Euclidean measures and has been shown to be useful for
comparing beta-diversity in microbial contexts. Non-metric
multidimensional scaling (nMDS) is popular for amplicon/
shotgun sequencing data, offering a rank-based approach that
handles non-linear relationships and outliers effectively, albeit
with potential distortions in global structures.57–60 Non-linear
methods like t-distributed stochastic neighbour embedding
(t-SNE) and uniform manifold approximation and projection
(UMAP) belong to the second type of dimensionality reduction,
known as neighbour graph algorithms.59–62 These methods
emphasise preserving local structures, relying on graph layout
algorithms to create probabilistic weighted graphs representing
relationships between high-dimensional data points. UMAP
and t-SNE differ primarily in their theoretical foundation for

balancing the local and global structures.53 While t-SNE results
can vary between runs due to its stochastic nature and sensi-
tivity to initialisation, UMAP, although also stochastic, tends to
demonstrate more stability across runs. UMAP excels in pre-
serving the global structure of the final projection while still
capturing local relationships, it is hence a better choice for
prediction tasks.59,60 Nonetheless, it may struggle to distin-
guish closely nested clusters. It is crucial to note that all three
non-linear methods are sensitive to initialisation, and it is
recommended to employ the first two principal components
from the linear approach as seeds for initiation. Users should
implement these exploratory methods with caution, exploring
various hyperparameters, running multiple projections for
stability. When choosing a non-linear dimensionality reduction
method, careful consideration of data scale, characteristics,
and specific research goals is essential.63

Matrix factorisation (NMF and MCFA). Aforementioned
methods for dimensionality reduction by matrix factorisation
– such as PCA – enable compression of large datasets into a
smaller feature space, and may thus facilitate identification of
important biological factors for the variation in the observed

Fig. 3 Figurative summary of the methods discussed in this review. All can reduce inputs with many features to a smaller number of components in
order to simplify interpretation of the underlying biological phenomena. PCA: Principal component analysis; MCFA: Multiset correlation and factor
analysis; LDA: Latent dirichlet allocation. Created with biorender.com.
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data. This is particularly relevant for holo-omic studies utilising
a matrix factorisation approach, in which we consider complex
systems through assembling a variety of data types from
both sides of the holobiont, adding to the already prevalent
imbalance of few biological samples and high feature counts.
Challenges arise when size and heterogeneity of the dataset
increases, which calls for adaptations of these matrix factorisa-
tion methods when applied in holo-omics.

Non-negative matrix factorisation (NMF)64 is a method for
dimensionality reduction that has been used both in several
multi-omic studies and as a basis for additional tools for multi-
omic data integration and analysis.65–69 NMF has the same
foundation as PCA, essentially decomposing a large data matrix
(D) consisting of feature values (p) across biological replicates
(n) into a reduced set of (r) linear expressions. These expres-
sions are represented by two matrices smaller than the original
data; one with weights (W, p � r) and one with the reduced
feature components (F, r � n) (Fig. 4A).

In contrast to PCA, NMF requires the decomposition
matrices to contain non-negative values only. This constraint
causes the NMF-derived linear expressions to only consist of
addends, thereby preventing cancellations between biological
factors with opposing signs. NMF thus reflects the idea of
assembling parts – analogous to the omic data layers – into a
larger image representing the whole system. Simultaneously,
the non-negativity constraint of NMF necessitates the com-
pressed data to be seen as an approximation (E) of the real
data rather than as an equality (=).70 Our objective function for
determining the decomposition matrices then becomes to
minimise the difference between the real data (D) and the
approximation (WF). This iterative approach may yield different
solutions based on the initial weight and reduced component
matrices, potentially affecting the outcome of the analysis.71

Hence dimensionality reduction by NMF may be more in line
with the analogy of assembling omic datasets to uncover

interactions between layers of the complex system, although
resulting in an approximated model with a potentially large
residual difference caused by the lossy factorisation.

Another approach to holo-omic dataset integration based on
matrix factorisation is multiset correlation and factor analysis
(MCFA)72 (Fig. 3 and 4C). While also seeking to compress
observed data (D) into matrices for weights (W) and reduced
components (F), MCFA effectively divides the model into two
parts. One set of decomposition matrices fit the so-called
shared space (S), consisting of reduced features with implied
importance across all the included omics layers. This shared
space is determined through an extension of CCA called
probabilistic CCA (pCCA), and it serves the same purpose as
the general decomposition seen in NMF. Additional sets of
decomposition matrices are then fitted for each individual
omics layer through factor analysis, based on the residual
between the read data (D) and the modelled shared space.
These ‘‘private’’ aspects of the model reflect contributions from
factors that are only perceived as important for observations in
specific omics layers. The full model then combines the shared
and private spaces to approximate the real data, determining
the weight and feature matrices through an expectation max-
imisation algorithm, with the remainder (c) being quantified a
third addend to complete the expression.

By fitting the observed data to shared and private reduced
features separately, the MCFA method may help distinguish
between components with implied importance across all levels
of the holobiont and those that only appear relevant for a
particular omics layer. Additionally, introducing a private
model layer for each omic may leave a smaller residual than
had the model only covered components relevant for all
included data layers. At the time of writing, MCFA has not
been applied in a peer-reviewed study since its publication in
August 2023, thus its versatility for holo-omic data integration
has yet to be demonstrated.

Fig. 4 Comparison of two methods for matrix factorisation; (A) and (B) non-negative matrix factorisation (NMF) and (C) and (D) multiset correlation and
factor analysis (MCFA). Both methods reduce a full set of observed data d (columns of D) into linear expressions of reduced features f (columns of F)
transformed by multiplication with weights (W). (A) and (C) In contrast to NMF, the MCFA method reduces the dataset into two spaces, either shared
between all omics layers (S) or private to each one (P). (B) and (D) All features contribute to approximate the observed data for each shared omics layer,
visualised in the same style as Fig. 4 in ref. 66.
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Network analysis

Networks are graphs that represent complex relationships
between interacting entities within a system.73 The network is
a ubiquitous concept in informatics that can represent many
analogous systems like social interactions, flow of information,
internet connections, and biological systems like genome-scale
metabolic networks (GEMs), genomic co-occurrences, RNA
regulation, protein–protein interactions, and metabolics-driven
networks.74 We use correlation networks as an example in this
review, as they are suitable for holo-omic studies (Fig. 3). Multi-
omics is a more mature concept than holo-omics, hence net-
work methods for the former study type are more developed.4 We
suggest extending these multi-omic tools by integrating data
crossing the holo-omic boundary as if it were another omics layer.
In general, network analyses handle high-dimensional data well
and can provide more interpretable results – compared to other
approaches – in the form of node and edge statistics.

WGCNA is a popular framework for investigating associa-
tions between biological features within a single omics layer.75

It calculates an adjacency matrix containing transformed, pair-
wise correlations between biological features such as genes,
proteins, and metabolites. The adjacencies are transformed in
order to obtain a scale-free network, in which features can be
related to continuous and categorical external data like pheno-
typic traits or treatment groups. On the basis of these adjacen-
cies, the topological overlap measure can be used together with
hierarchical clustering to obtain a set of clusters where each
biological feature becomes part of only one of the formulated
clusters. In WGCNA terminology, these clusters are referred to
as ‘‘modules’’ and are represented by their first principal
component. This linear combination of biological features is
referred to as an eigengene and is idealised to capture the most
important variation of the module with limited noise. Since
these modules are called without utilising information about
treatments or traits, the method can be characterised as
unsupervised.

WGCNA can be extended to holo-omic data76 by relating the
modules across the host–microbiome boundary. WGCNA has
been applied for both clustering and dimensionality reduction
in several multi and holo-omic studies related to both plant77

and animal biology.76,78–80 One study concerning the gut
microbiome in patients with insulin sensitivity or resistance79

applied a range of node selection and dimensionality reduction
methods on their data, and used WGCNA to find clusters of
hydrophilic and lipid metabolites. These were later connected
to other omics layers to identify clusters associated with
metabolism of the gut microbiome between the groups of
patients.

Alternative clustering methods can also be employed for
dimensionality reduction. A state-of-the-art example is the
Leiden algorithm,81 which is an optimisation-based form of
clustering. The algorithm was used in a study of HIV patients in
which they investigated health in relation to the microbiome
of the patients. Specifically, they used the Leiden algorithm
to detect clusters of microbiome-derived metabolites before
integrating these features with other omics layers.82 Similarly,

a study of the SARS-CoV-2 used the Leiden algorithm to detect
clusters of metabolites.80

Transkingdom network analysis (TkNA)83 for holo- and
multi-omics is a network-based method that detects biological
features that differentiate treatment groups. TkNA is designed
to handle a binary testing condition, such as ‘‘disease’’ and
‘‘control’’. The method consists of a comprehensive pipeline
containing all the functions needed to transform normalised
data into a network that can be readily visualised. TkNA creates
a co-variation network and calculates node statistics like node
degrees and bipartite betweenness centrality (BiBC). This
approach emphasises that hub nodes with high BiBC and
degree represent potential modules of the biological network.
Additionally, TkNA interfaces with the Infomap84 and Louvain85

network clustering algorithms, which can aid in the interpretation
of a biological network further.

The size and complexity of networks created from holo-
omics datasets make them hard to interpret, hence it is
necessary to find ways to categorise and structure the repre-
sented data. Clustering nodes and thus reducing the number of
visual features to consider can help organise the network. This
is exemplified in the aforementioned SARS-CoV-2 study where
WGCNA was used to recognise clusters across omics layers. The
cross-omic clusters correlating with disease severity revealed
a relationship between host serum metabolites and micro-
organisms.80

In gene set enrichment analysis (GSEA), a gene set usually
represents a metabolic pathway that performs a specific bio-
logical function. By testing whether there is an enrichment of
genes from a specific pathway in a network cluster or module,
we can argue that this pathway is captured by the module,
thereby drawing further conclusions about its activity by inter-
preting the module’s omics profile and association to other
phenotypic metadata. GSEA can be applied on clusters that are
defined using any clustering algorithm. An example is a study
on the Atlantic salmon76 where gene enrichment analysis was
used to show that certain host RNA genes responded to long
chain fatty acids in the feed. A similar method86 for improving
interpretability is network enrichment, in which functional
information and network connectivity is integrated. Instead
of testing for a significant difference between treatment groups
like GSEA, network enrichment quantifies the differential
representation among neighbours in the gene network.87

A network can be interpreted by statistical concepts that
describe crucial properties of the nodes and how they are
connected. Degree is simply the number of neighbours of any
node. The degree can be expressed relative to the node with the
highest number of neighbours, hence degree centrality. Node
betweenness describes how many of the pairwise node connec-
tions in the network pass through a specific node. If this
betweenness measurement is high, the node represents a
bottleneck and is indicated to have a potential regulatory
effect.83 The cluster coefficient of a node describes the number
of edges between its neighbours in relation to the possible
number of edges between these. Coreness considers the neigh-
bourhood of a node as it describes whether a node is part of a
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‘‘core’’ of nodes that are all interconnected with a certain
degree (k). Hence, a network can be characterised by the
maximum coreness of all nodes. Eigenvector centrality is
another network statistic computed for each node in a network.
The maximum eigenvalue of the adjacency matrix is computed
and is used to normalise the eigenvector, which becomes the
eigenvector centralities. Generally, nodes with high eigenvector
centrality are essential and interact closely with their respective
neighbours.74 In a study of periodontal disease and response to
different treatment, eigenvector centrality was used specifically
to find nodes in the network that were connected to other
highly connected nodes.88 This revealed microbial taxa that
could be more closely associated with the patients’ health
status. The same study also looked at the network transitivity
– describing the ratio of connected triplets to the number of
possible connected triplets – for the networks over different
patients and disease states. This statistic is high in the presence
of clusters, and the more severe disease cases in the study were
associated with lower transitivity. A higher interdependence
(i.e. transitivity) between microbes was therefore shown to be
beneficial for the patient. The severe cases were also more often
associated with networks with a high diameter – meaning the
shortest path between the most distant nodes – which is
expected with low transitivity.

Other tools and frameworks

In addition to the methods introduced above, there are various
other multi-omic integration tools that could be useful for holo-
omic data analysis. A comprehensive and constantly growing
community-maintained list of such tools can be found online
in a dedicated Git repository.89 Aside from a handful of
methods aimed at microbiome analyses, this list mainly repre-
sents a host perspective. Nevertheless, many of the tools could
be used in a host–microbiome context, including the examples
highlighted below.

MixOmics90 is a toolkit that offers both unsupervised and
supervised statistical approaches for multi-table datasets, ran-
ging from single omic analysis to complex multi-omics. The
supervised method for multi-omics, titled Data Integration
Analysis for Biomarker discovery using Latent cOmponents
(DIABLO),91 is based on partial least squares regression/projec-
tion to latent structures92 discriminant analysis (PLS-DA)93 and
sparse generalised canonical correlation analysis (sGCCA),54 an
extension of the CCA method. The sparse version of DIABLO
involves using lasso94 to select those features from each layer
that best discriminate between groups of interest. Since DIA-
BLO does not assume any particular distributions from the
input data,91 it is applicable for holo-omic datasets, as long as
each layer is normalised in a way that is appropriate to that data
type. The limiting factor of this approach is that DIABLO is a
supervised method aimed at classification of data into pre-
established groups of interest, which makes it less useful for
basic, explorative holo-omic studies. Examples where this tool
has already been used include a study of the relationships of
gut microbiota, dietary fatty acids, and liver gene expression in

mice;95 and the effects of cyanobacterial blooms on the micro-
biome and metabolome of the medaka fish species.96

For studies that do not involve a predefined grouping
variable, mixOmics is compatible with mixKernel97 for multi-
omics integration. This explorative, unsupervised approach is
based on forming a kernel – a symmetric and positive function
that provides pairwise similarities between samples – to repre-
sent each layer of data.97 These can be combined into a meta-
kernel by creating one of two alternatives: (i) a consensus
kernel, or (ii) a sparse kernel that preserves the topology of
the original data. The meta-kernel can then be used in down-
stream analyses, for example kernel PCA (KPCA)98 for visualisa-
tion of the different layers. Since mixKernel is suited for
heterogeneous data, it is also applicable for holo-omics. So
far, this method has not been commonly utilised in a host–
microbiome context, but it successfully complemented simpler,
single-table statistics when selecting plant-beneficial bacterial
strains for rice cultivation based on plant growth related
measurements.99

Another explorative method is mCIA100 – a multi-table
version of co-inertia analysis (CIA or COIA)101 – which has been
tested for selecting rice growth promoting bacteria.99 CIA
resembles sPLS in that it also searches to maximise the
covariance between eigenvectors.100 mCIA has been extended
to create sparse mCIA (smCIA) which adds feature selection,
improving the interpretability of the results.102 There is also a
further extension, structured sparse mCIA (ssmCIA), which
enables incorporating structural information about variables,
such as regulatory networks for genes.102 However, this is less
relevant for holo-omic analyses as such pre-existing informa-
tion is seldomly available.

Compositional omics model-based integration or COMBI103

is another explorative, unsupervised multi-table method. It is
particularly appropriate for host–microbiome analyses since it
has been designed to account for compositionality, a feature
common to many microbiome measurements such as 16S rRNA
gene amplicon data and shotgun metagenomic data.104 Speci-
fically, compositional data is handled through using the
centred log-ratio transform as a link function in the models,
while the integrative part of the approach is based on inferring
latent variables.103 This method also offers visualisation of the
results as a multiplot showing the features with the largest
loadings.

Finally, latent dirichlet allocation (LDA) is a form of unsu-
pervised dimensionality reduction105 (Fig. 3). It uses a specific
terminology as it was originally invented for use in text mining.
In a corpus – a set of text documents that represent a spectrum
of topics – it allocates each word to a predetermined number of
topics so that each word in the total vocabulary belongs to one
topic. Each topic is a set of words that, as a whole, revolve
around a semantic context. Although the topics are coherent
and represent an underlying theme, the title of each topic must
be defined manually by interpretation of the listed words in
each topic. As a text mining tool, LDA doesn’t immediately lend
itself useful for biological data inquiries. But, consider sub-
stituting a corpus for an omics layer: documents become
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biological samples, and genes or compounds become the
words. By doing so, the model will be able to capture latent
topics defined by biological features that tend to occur together
in the same documents (co-abundance), forming topics that
represent metabolic functions in the samples. This text-biology
analogy means that LDA can be applied for use in biological
studies.106

Conclusion

As the biological insights of holo-omics are limited by the
computational model that picks up host–microbiome interac-
tions, there is a need for better modelling tools. Typically, holo-
omic analysis is performed with complex models that use
clustering or network analyses coupled with functional enrich-
ment analyses to assign biological functions to interacting
groups of biochemical compounds across the host–microbiome
boundary. As holo-omics is a specialised case of multi-omics, it
is possible to apply multi-omic tools in a holo-omics context. In
multi-omics, the omics layers are integrated by correlating
clusters of biochemical compounds between layers across the
samples. Carried forward, it is possible to integrate the two
sides of the holobiont by correlating clusters of biochemical
compounds between the host and microbiome sides across the
samples.

As this is a new, fast-moving field, there still is no consensus
of what is the best way to do science using holo-omics. We hope
that this review can generate discussion and new ideas on how
to approach the further development of holo-omic methodolo-
gies, and we are positive that gold standard methodologies will
soon be established.
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Abstract
While rapid progress has been made to characterize bacterial and archaeal populations
residing in the rumen microbiome, insight into how they interact with keystone protozoal
species remains elusive. Here, we reveal two distinct rumen community types (RCT-A and
RCT-B) that are not strongly associated with host phenotype nor genotype but instead linked
to protozoal community patterns. We leveraged a series of multi-omic datasets to show that
the dominant Epidinium spp. in animals with RCT-B employ a plethora of fiber-degrading
enzymes that present enriched Prevotella spp. a favorable carbon landscape to forage upon.
Conversely, animals with RCT-A, dominated by genera Isotricha and Entodinium, harbor a
more even distribution of fiber, protein, and amino acid fermenters, reflected by higher
detection of metabolites from both protozoal and bacterial metabolism. We reveal that
microbiome variation transcends key protozoal and bacterial populations, which should act
as an important consideration for future development of microbiome-based technologies.

Introduction
The herbivore rumen is a highly specialized organ that has co-evolved in symbiosis with a

complex microbiome, made up of thousands of microbial populations whose interactions

collectively convert plant material into energy-yielding metabolites for the host’s sustenance.
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The rumen microbiome acts as an interface between the nutrient potential of the feed and

the metabolism of the host animal, and is represented by a wide radiation of the tree of life

covering all domains: Archaea, Bacteria, and Eukarya (ciliate protozoa and fungi)1,2. From

ingested plant material, cellulose, pectin, xylans, xyloglucans, and other polysaccharides are

degraded by microbially encoded carbohydrate-active enzymes (CAZymes) down to their

component monosaccharide units, which are subsequently fermented into several

intermediates. Most importantly, pyruvate is converted to volatile fatty acids (VFAs) such as

acetate, propionate, and butyrate3. Along this fermentation pathway, hydrogen (H2) is

produced, which predominantly flows into methanogenesis but can also be incorporated into

VFAs through alternative hydrogen sinks such as the reduction of fumarate4. The rumen

epithelial wall is able to transport most of the VFAs directly into the blood, whereas more

complex metabolites take a longer path, being assimilated by the posterior gastrointestinal

tract5.

Rumen microbiome structure and function is shaped by many dynamic variables, such as
diet, age, health status, animal husbandry, behavior, and breed. Efforts to monitor and
predict overall rumen microbiome function for the purpose of improved animal production
have up to date mainly focused on recovering isolate and genome representation of the
various populations in the rumen. However, the superior amenability of bacteria and archaea
to current molecular microbiology techniques has created significant domain-specific
information bias, with recovery of greater than 50,000 bacterial and archaeal genomes
compared to ~50 for eukaryotic species1,2. The ciliate protozoa, specifically the class
Litostomatea, subclass Trichostomatia, have a relatively large biomass in the rumen (up to
50%1), and are ubiquitous among ruminants. Although single-celled, they have complex
organelles and physiological features such as mouthlike adoral openings that lead to a
tongue-like extrusible peristome, which ingests feed particles into an esophagus-like
structure6. This, combined with their outside being covered with undulating cilia for
propulsion, makes many of them voracious predators6. To add to their versatility, they
express carbohydrate-active enzymes (CAZymes) and are able to degrade plant fibers2.
Decades of in vitro work have shown that rumen ciliates often act as a microhabitat for
archaea and bacteria7, especially Methanobrevibacter spp., which form metabolic
mutualisms with several ciliate species by recycling the H2 produced by the ciliates as a
main metabolic end product8,9. Providing in vivo context to the wider ecological impacts of
rumen protozoal populations has proven immensely challenging but is necessary to advance
microbiome-based solutions to animal productivity and sustainability, for example in the
context of methane mitigation.

Rapid advancement of biotechnological tools has improved accessibility of representative
data for resident rumen microbiota, yet information on how species interact within these
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multidomain ecosystems is still limited. In this study, we applied long-read metagenomics,
existing single-cell amplified eukaryotic genomes, and genome-centric multi-omics of both
host and its microbiome to improve resolution of inter-domain relationships and the influence
they exert at a systems level. Two breeds of cattle from a highly controlled experiment were
phenotyped for key performance traits, and rumen, epithelial, and liver samples were
analyzed across all molecular layers—genes, transcripts, proteins, and metabolites—by the
application of their respective -omics (Fig. 1). Taxonomic analysis identified two clear rumen
microbiome structural patterns across the entire animal cohort that were not strongly
correlated to breed, any of the recorded animal performance metrics, or methane emissions.
Looking deeper across the microbial domains, we identified two distinct protozoal population
types that we hypothesize to drive systems-wide microbiome differences, ultimately affecting
the interlinked metabolisms that channel the flow of nutrients across the
feed-microbiome-host axis.

Results

One controlled animal experiment reveals two distinct rumen
microbiome patterns
To create greater resolution and depth of understanding within the rumen microbiome, we
analyzed samples from a controlled feedlot trial of adult beef cattle fed a total mixed ration of
forage and concentrate (ratio: 51:49). From an initial 80 animals representing two breeds
that commenced the trial, 36 Aberdeen-Angus cross (AAX) and 35 Luing animals completed
the experimental period with all planned measurements, including key performance traits
(KPTs) such as dry matter intake (DMI), live weight gain (LWG), feed conversion ratio (FCR)
and methane yield (g/kg DMI). For microbiome analysis, rumen samples were taken for all
71 animals at five timepoints across the experimental period and subjected to 16S rRNA
gene amplicon sequencing, with an additional final timepoint sampled at slaughter (Fig. 1a).
A subset of 24 animals (12 AAX, 12 Luing), representing the highest and lowest natural
levels of methane yield, were sampled across both the host and its microbiome at slaughter.
The datasets generated from these 24 animals included long-read metagenomics for
metagenome-assembled genome (MAG) reconstruction as well as RNA, protein and
metabolite analysis of rumen digesta, rumen epithelia and liver tissue (Fig. 1b). As
expected, the recorded KPTs showed breed-dependent differences in animal metrics, such
as a higher liveweight and dry matter intake (DMI) in AAX animals, and a trend for higher
methane emissions (g/kg DMI) in Luing animals (Fig. 1c).

For microbiome characterization, long-read metagenomic sequencing of rumen samples
from the 24-animal subset produced a total of 700 high- and medium-quality
metagenome-assembled genomes (MAGs, 656 classified as bacterial, 44 as archaeal;
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Supplementary Table 1a). These MAGs, together with previously published fungal
genomes (n=9)10 and protozoal single amplified genomes (SAGs) (n=53)2,11, formed the
reference database for metatranscriptomic and metaproteomic analyses. Rumen
metatranscriptomics identified 1,669,849 expressed genes (of which 1,299,827 from
bacteria, 80,325 from archaea, 252,768 from protozoa, and 9,529 from fungi), whereas
metaproteomics identified 35,655 protein groups (16,823 from bacteria, 380 from archaea,
18,000 from protozoa, 137 from fungi, and 315 from the cattle host) (Supplementary Table
1b). To further assist our interpretations of host and microbial metabolic activity we
generated untargeted metabolomic data from the three different sample types available
(numbers of identified metabolites: rumen: 496; rumen epithelium: 517; liver: 859;
Supplementary Table 1b). Finally, we performed VFA measurements from rumen fluid, as
well as Microarray Polymer Profiling (MAPP) of rumen digesta, determining the composition
and relative abundance of glycans available to the rumen microbiome.
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Figure 1. Experimental, sampling and data generation design of a controlled beef cattle animal
trial. a. Animal experimental setup. A total of 80 animals across two breeds (Aberdeen-Angus cross
and Luing) were enrolled of which 71 completed the 4-5 month study period that culminated in their
slaughter. Key performance traits such as live weight gain (LWG), dry matter intake (DMI), feed
conversion ratio (FCR) and methane yield (g/kg DMI) were measured for all animals and rumen
samples periodically collected across the duration of the trial. b. Sampling design for a subset of 24
animals, selected on the widest recorded level of natural methane yield variation. At slaughter, three
sample locations were collected: Rumen digesta, rumen wall tissue, liver. Samples were
characterized on several molecular layers: Genomes, transcripts, proteins, untargeted metabolomics.
c. Key performance traits and other animal production metrics that were determined for all enrolled
animals. IQR: interquartile range. Significant p-values are marked with bold italics.

Against expectations, microbiome analysis of the 71 animals using the 16S rRNA gene
sequence data did not reveal clear associations for any alpha or beta diversity metrics with
breed, methane yield, or any of the other measured animal KPT (Extended Data Fig. 1).
However, beta diversity plots illustrated two groups of animals whose microbiome structure
distinctly clustered together, which could also be captured using probabilistic modeling
(Dirichlet Multinomial Mixtures12) (Fig. 2a). Surprisingly, these two clusters, hereafter referred
to as Rumen Community Type-A and -B (RCT-A and RCT-B), did not correspond to any
measured animal KPT nor to any technical grouping that arose from the experimental
workflow (Extended Data Fig. 2a). Furthermore, these community types were stable across
time: the animals consistently stayed in the same cluster over the six timepoints sampled
during the experiment (Extended Data Fig. 2b).

Curiously, RCT-A and -B were detectable across several omic layers in the 24-animal subset
that we analyzed in more detail. Principal coordinates analysis (PCoA) of MAG abundances
reflected the same pattern that was detected in the 16S rRNA gene sequence data (Fig. 2b).
In Principal Component Analyses (PCA) of digesta and rumen wall epithelium
metatranscriptomics as well as digesta metaproteomics, the first principal components (PCs)
clearly differentiated RCT-A and -B , thus mirroring the 16S rRNA gene sequence analysis
results of the entire animal cohort (Fig. 2c-d). In other words, the microbiome clustering into
either RCT-A or -B was the largest contributor of variation across these layers. The
congruence between the molecular layers affirmed that elements of metabolism are affected
by this compositional difference. Untargeted metabolomics of digesta and the rumen wall
epithelium reflected this pattern on PCs 4 and 3, respectively (Fig. 2e). Finally, host
proteomics and transcriptomics from wall and liver data also showed a trend towards the two
community types, although not always statistically significant (p < 0.05 only for PC15 from
liver proteomics; 0.1 > p > 0.05 for other host data; Fig. 2f).
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Figure 2. Microbiome analyses revealing two distinct groups of animals, labeled as Rumen
Community Type-A and -B. a. Principal Coordinate Analysis (PCoA) plot of robust Aitchison
distances of 16S rRNA gene amplicon sequence analysis of 71 animals across two breeds (AAX =
36, Luing = 35), showing the two optimal clusters based on Dirichlet Multinomial Mixtures. b. PCoA
plot of robust Aitchison distances of shotgun metagenomic data from a subset of 24 animals with the
highest and lowest methane yield (g/kg DMI). c-f. Dot and box plots of microbiome-derived c.
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metatranscriptomic, d. metaproteomic, and e. metabolomic data as well as f. host-omic data, showing
the first Principal Component (PC) with a significant difference between the two clusters (t-test) for
each sample material and measurement type. Box hinges represent 1st and 3rd quartiles, and
whiskers range from hinge to the highest and lowest values within 1.5*IQR of the hinge. e. Taxonomic
summaries of the 100 features with the highest positive and negative loadings for PC1 in digesta
metatranscriptomics and -proteomics.

Protozoal patterns associate with rumen community types
To explain the biological drivers causing the system-wide microbiome variation observed as
RCT-A or -B, we examined its pattern across the different microbial domains present within
the rumen samples of this study, incorporating the archaeal and bacterial MAGs as well as
the single amplified genomes (SAGs) for protozoal populations. The taxonomic
classifications of the transcripts and proteins with the strongest contributions to the
significant principal components from rumen content (Fig. 2g) clearly indicated that the
RCT-A and -B clustering extended to the abundance profiles of detected protozoal species.
Based on these and the differential abundance comparisons of metatranscriptomic and
metaproteomic data, animals that exhibited the RCT-A pattern were enriched for families
Entodiniinae and Isotrichidae and were defined by the higher abundance of Entodinium
bursa, Entodinium caudatum and Entodinium longinucleatum; Isotricha intestinalis and
Isotricha YL-2021a; as well as Ostracodinium gracile and Polyplastron multivesiculatum
(Fig. 3). Conversely, animals with the RCT-B pattern were enriched for subfamilies
Diplodiniinae and Ophryoscolecinae2 and were defined by species Diplodinium dentatum,
Epidinum cattanei, Epidinium caudatum, and Ophryoscolex caudatus (Fig. 3).

Coexistence or exclusion patterns of protozoal species have been repeatedly observed over
half a century13. J. Margaret Eadie first microscopically determined in 1962 that certain
genera of protozoa, or “community types”, were detected across select cohorts of animals in
both sheep and cattle herds13. Protozoal community type A was defined with Polyplastron
multivesiculatum and other species under genera Ophryoscolex and Diploplastron (now
Diplodiniinae), while type B was defined by high abundance of Eudiplodinium and Epidinium
spp., either together or alone13. Within our microbiome data, we observed protozoal
expression patterns (both RNA and protein) that bore remarkable similarities with the
definitions of Eadie’s original A/B types. RCT-A animals resembled protozoal community
type A with Polyplastron detected at significantly higher expression levels, while Epidinium
spp. were enriched in RCT-B animals considering both metatranscriptomic and
metaproteomic comparisons.
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Figure 3. Differential abundances of taxa across omics. a. Summary of differential abundance
results. Numbers indicate significantly different taxa (adjusted p < 0.05; ASVs or MAGs per genus for
bacteria and archaea, SAGs per species for ciliates). For bacteria and archaea, only genera with
differentially abundant taxa supported by at least two omics in the same direction are shown.
Amplicons: 16S rRNA gene sequence data ASV counts compared with DESeq2; metaG: MAG
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relative abundance compared with Wilcoxon Rank Sum tests; metaT: transcript counts summarized
per MAG or SAG, compared with DESeq2; metaP: LFQ intensities summarized per MAG or SAG
compared with Wilcoxon Rank Sum tests. Multiple comparison correction is included in the testing
procedure for DESeq2 (Benjamini-Hochberg FDR); additional FDR correction was implemented for
Wilcoxon Rank Sum tests. b.-c. Ciliate abundances for the species seen more than once in panel a.
b. Metatranscriptomics, c. Metaproteomics. Diamonds indicate medians, whiskers IQR.

One noticeable difference between previously defined protozoal community types and the
microbiome patterns we observed herein was the coexistence of P. multivesiculatum and
Epidinium spp. in RCT-B animals, a scenario previously suggested by others to constitute a
type AB protozoal community type9,14,15. According to Williams & Coleman, the introduction of
P. multivesiculatum-containing (A-type) rumen fluid through a rumen cannula into a B-type
rumen results in the “complete elimination of Epidinium spp. suggesting consequential
predatory dynamics of the protozoal populations”16. The P. multivesiculatum > Epidinium spp.
dominance was later supported by Kittelmann et al. who postulated that animals observed
with both species likely are undergoing a rumen transition from type B to type AB and finally
type A (over a 2 week period)9. To explore the interrelationships of these species, we
examined the metatranscriptomes and metaproteomes of rumen samples collected from six
animals over five months. In line with the stability of the bacterial and archaeal community
structure (Extended Data Fig. 2b), the coexistence patterns of P. multivesiculatum and
Epidinium spp. were consistent over time, indicating a constant low but detectable presence
of P. multivesiculatum in type B and of Epidinium spp. in type A animals (Extended Data
Fig. 3). This brings to question whether an antagonistic relationship indeed exists between
these two protozoal genera.

Protozoal community types affect bacterial and archaeal structure and
function

Examining further the metatranscriptome and metaproteome data, we sought to identify the
concerted microbial populations that were driving the system-wide variation we observed,
and if there exists biological relationships to explain these patterns. We looked at differential
expression analysis as well as the features with the strongest loadings in our
abovementioned PCA analysis, which both highlighted that specific bacterial, archaeal and
protozoal populations were indeed more prevalent in either RCT-A or -B (Fig. 2e, Fig. 3).
Collectively, for animals categorized as RCT-A, the metaproteomes from their rumen were
largely dominated by Isotricha spp, Entodinium spp, and the clostridial lineage
Acutalibacteraceae (RUG762) while transcriptomes for various Methanobrevibacter spp.,
Sodaliphilus spp., Faecousia spp. and Lachnospiraceae (UBA1066) were also prevalent. In
contrast, both the metatranscriptome and metaproteome for rumen samples from RCT-B
animals showed far higher detection of Epidinium spp., while high transcript levels were also
observed for many Prevotella populations (Fig. 3).
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To link biology to these observed structural patterns, we explored the annotated functions of
the differentially detected populations more deeply with specific attention to the key
functional stages of rumen digestion, namely fiber hydrolysis, fermentation of organic
material and production of energy-yielding volatile fatty acids (Fig. 4). By far the most active
fibrolytic population observed in RCT-B animals was Epidinium spp. which contained a
plethora of CAZymes predicted to act upon cellulose, arabinoxylans, beta-mannans and
arabinogalactan protein glycans commonly found in grasses and grains (Fig. 4b). Epidinia
are the most reputable among the rumen ciliates to actively attach and degrade plant
material, as visually confirmed across a series of prior studies16. In a scenario where epidinia
are more proliferant in animals and engaging in plant material deconstruction, it is
reasonable to expect their activity and size will impact the glycan landscape that is available
for neighboring microbial populations. Indeed, our MAPP analysis of rumen digesta particles
was suggestive of differences in various beta-glucan, xylans, xyloglucans, and
arabinogalactan proteins between the epidinia-dominated RCT-B animals and the RCT-A
animals (Fig. 5a). In turn, many fiber-degrading bacterial lineages, such as Sodaliphilus and
Prevotella spp., were detected at higher levels in metatranscriptomic data arising from
RCT-B animals (Fig. 3), supporting our hypothesis that system-wide effects are driven by
protozoal activity. Within RCT-B animals, a higher proportion of butyrate was detected (Fig.
4c). This was corroborated by elevated metaproteomic detection of central
butyrate-producing enzymes in epidinia species (Fig. 4b) as well as a prior meta-analysis of
protozoa which calculated that defaunation will substantially decrease ruminal butyrate
levels17.

In the absence of elevated epidinia metabolism within RCT-A animals, both PCA and
differential abundance analyses indicated the primary responsibilities for digestion was
shared more broadly across the protozoal species Entodinium spp. and P. multivesiculatum
as well as bacteria affiliated to family Acutalibacteraceae or genera Faecousia and
Merdiplasma (Fig. 4a-b). The Isotricha species that dominated RCT-A animals were, as
expected17, not primarily degraders of plant material, though we suspect their influence still
impacted heavily upon other bacterial populations. For example, populations affiliated to
RUG762 (Acutalibacteraceae), had some of the strongest loadings for RCT-A animals within
the metaproteomic PCA analysis (Fig. 2e) and were differentially abundant across all
molecular datasets (16S rRNA, DNA, RNA, and protein) analyzed in this study (Fig. 3a).
Closer annotation of their metabolic features suggested RUG762 populations were engaged
largely in protein and amino acid fermentation, and this was supported by metaproteomic
and metabolomic enrichment of the enzymes and metabolites for aspartate, glutamine and
branched chain amino acid metabolism in RCT-A animals (Fig. 4c, Fig. 5b). Fermentation
end products were predicted to be propionate and branched-chain volatile fatty acids, which
were also detected at higher proportions in RCT-A animals (Fig. 4c). The protein and amino
acids for ruminal fermentation could plausibly arise from the grain fraction of the animal's diet
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(355 g/kg DM in the concentrate component). However, Isotricha spp. have been shown to
excrete cellular nitrogen in the form of amino acids, principally alanine, proline, glutamic
acid, and aspartic acid16,18. If such excretion of amino acids indeed occurs in RCT-A animals
dominated by Isotricha spp. our observations of elevated RUG762 metabolism are plausibly
interlinked, though we acknowledge this hypothesis must be tested in future experiments
that examine cellular proximity and nutrient transfer between these populations.
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Figure 4. Functional differences between rumen community types. a.-b. Summaries of Kegg
Orthologs in pathways of interest and CAZymes in a. bacterial and b. protozoal genera of interest,
selected based on Fig 2e. MG = metagenomic data, blue cells indicating that the function was present
in a MAG classified to the genus in question. MT = metatranscriptomic data, stars reflecting adjusted
p-values from DESeq2. MP = metaproteomic data, stars reflecting fdr-adjusted p-values from
Wilcoxon Rank Sum tests. Empty spaces indicate that the function was not detected at all in the
genus in question. c. Summary of metabolite measurements. Volatile Fatty Acid (VFAs) panel shows
all measured VFAs, untargeted metabolomics panel only metabolites with annotation level 1 or 2a and
a multiple comparison corrected p-value < 0.1. Diamonds indicate medians, whiskers IQR. In all
panels, *** : p < 0.001, ** p < 0.01, * : p < 0.05, · : 0.1 > p > 0.05.

It was interesting to note that for RCT-A animals a grouping of Methanobrevibacter-affiliated
populations were detected at higher abundance and/or with loadings clearly associating
them with RCT-A in our PCA analysis, despite there not being significant differences in
measured methane yield across the two groups of animals (Extended Data Fig. 2a). The
holotrich Isotricha species have been repeatedly shown17 to associate with different
methanogenic populations than entodiniomorphids (e.g. epidinia), and our data also followed
this trend with Methanobrevibacter populations in epidinia-dominated RCT-B animals
seemingly of distinct strains compared to RCT-A (Fig. 3a, Extended Data Fig. 3). Functional
examination of bacterial populations enriched in RCT-A animals (Fig. 3a) identified several
taxa, including Faecousia and Merdiplasma species, that were predicted to encode uptake
hydrogenases and/or the Wood-Ljungdahl pathway (WLP) (Fig. 4a). This pathway
potentially facilitates reductive acetogenesis and acts as an alternative hydrogen sink to
methanogenesis19. Indeed, aforementioned RUG762 populations were also suspected to
encode a partial WLP as well as the associated energy conservation machinery such as the
electron-bifurcating hydrogenase, ferredoxin:NAD-oxidoreductase (Rnf) complex, and FoF1

ATP synthase (Fig. 5b). However, rather than complete reduction of CO2 to acetate via the
acetyl-CoA synthase/carbon monoxide dehydrogenase complex, we suspect RUG762
populations are instead producing methionine via a cobalamin-dependent
5-methyltetrahydrofolate–homocysteine methyltransferase. Under normal rumen conditions,
reductive acetogens are believed to be outcompeted energetically by methanogens, except
for instances of higher hydrogen partial pressure19. In this context, and in the absence of
measured hydrogen levels from our samples, we speculate that non-differential methane
yield levels across the RCT-A and -B animals are the result of increased competition for
hydrogen across methanogens and other hydrogenotrophs in the rumen. Additional support
for this hypothesis comes from our observations that Methanosphaera spp. were also
differentially observed at higher levels in RCT-A animals (Fig. 3a), which follows previous
studies that show this group of methanol-utilizing methanogens is detected in animals with
elevated hydrogen levels20.
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Figure 5: Metabolic predictions from major populations strongly featured in RCT-A and -B
animals that are predicted to influence rumen function. a. Illustration of Epidinium cattanei, the
protozoal species most strongly associated with RCT-B, predicted to engage a broad range of
CAZymes to degrade dietary plant material. Given the size and activity of E. cattanei their fiber
degrading metabolism is predicted to impact the rumen structure and function of RCT-B animals,
which was supported via Microarray Polymer Profiling (MAPP) of various hemicellulosic plant fibers,
which highlighted differential abundances. In the MAPP inset, diamonds indicate medians, whiskers
interquartile ranges, and stars represent uncorrected p-values from Wilcoxon rank sum tests. b.
Pathway reconstruction for the Acutalibacteraceae-affiliated RUG762 population, strongly associated
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with RCT-A, highlighting amino acid (red boxes) metabolism via fermentative and a partial
Wood-Ljungdahl Pathway, which was supported by the associated energy conservation machinery
such as the electron-bifurcating hydrogenase, ferredoxin:NAD-oxidoreductase (Rnf) complex, and
FoF1 ATP synthase. Bold text indicates differentially abundant metabolites from Fig 4.

Implications for the host animal
Despite the distinct systems-wide microbiome shifts that were reconstructed in RCT-A and
-B animals, we were surprised to observe limited data that would suggest these structural
and functional effects are being passed onward to the host animals. This was apparent in
animal performance measurements (Extended Data Fig. 2a), microbial and host
metabolomic data as well as host expression data in gut epithelial and liver tissues, which
showed only minor changes to a limited number of features (Fig. 3). The clearest difference
was the relative composition of several amino acids and VFAs, with propionate and
branched chain volatile fatty acids higher in RCT-A animals, while butyrate levels were
higher in RCT-B (Fig. 4c). Since VFAs are the major energy source for the host animal and
are taken up directly through the rumen wall epithelium3, we further applied a series of
network analyses using rumen and epithelial proteomic data to ascertain if underlying
expression patterns were indeed evident between metabolically linked microbial and host
pathways. From rumen metaproteomes, weighted gene correlation network analysis
(WGCNA)21 identified a wide variety of co-expression modules (ME) that contained mixtures
of protozoal, bacterial and archaeal proteins; many of these modules were, unsurprisingly,
strongly correlated with the RCT variable (Extended Data Fig. 5). In the epithelial
proteomics data, WGCNA identified only two co-expression modules, comprised largely of
host proteins, that were correlated with the RCT groupings, none of which were enriched
with proteins functionally inferred in VFA metabolism (Extended Data Fig. 6). Of note,
interlinked patterns of rumen digesta (ME9 and ME13) and epithelial (ME1) modules were
enriched in proteins annotated in cysteine and methionine metabolism and RUG762
populations suggesting possible metabolic interplay of amino acids, though this needs future
testing for validation. The lack of striking host effects arising from microbiome differences in
RCT-A and -B animals highlights the extraordinary plasticity of the rumen microbiome and its
ability to absorb structural variation that on the surface would appear to inflict real functional
impact.

Discussion
Rumen protozoa are large and complex compared to their bacterial and archaeal neighbors
and their presence and distribution within the livestock rumen has been heavily documented
for well over 130 years16. Despite their long-standing history their impact across the total
rumen ecosystem remains poorly understood at a molecular level due to technical
restrictions that have impeded their study, and which have only recently been overcome with
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omics methodologies. Herein we were excited to link the molecular patterns and functional
interpretations in our data to community types first postulated over 60 years ago via light
microscopy13. When first describing protozoal community types in 1962 J. Margaret Eadie
explicitly stated: “It is concluded that inter-relationships of the type described may play an
important role in determining the components of a particular rumen microfauna.”13. We show
that for the animals in this study, the system-wide rumen microbiome structure indeed
extended beyond the protozoal components originally proposed in community types A and B
to encompass bacterial and archaeal populations.

Advancing the original Eadie hypothesis, our multi-layered omic datasets offered plausible
interpretations on how two independent modes of metabolic interactions are interlinked
across the rumen microbiome of RCT-A and -B animals. Of particular note was the
seemingly direct influence certain protozoal species (e.g. Epidinium spp) play at higher
trophic levels such as fiber hydrolysis, which likely impacts fiber structural configuration and
availability for bacterial fibrolytic populations. On the other hand, protozoal metabolism of
Isotricha spp. was predicted to indirectly affect how nutrients enter the food chain via
excretion of metabolites such as amino acids and hydrogen, which impacted the structure
and function of intermediate fermenters. While this study goes some way into explaining the
microbiome-wide effects that particular protozoa can exert, major questions regarding the
origin of their structural configuration still remain. We speculate the original seeding took
place via animal-animal contact likely during early life transition that started with mother-calf
contact and gradually extended to other animals across the greater herd. Unfortunately,
behavioral data prior to animal enrolment and pen groupings used in this animal trial were
not recorded, though it was clear that grouping of RCT-A and -B animals together in
randomized pens had no immediate nor long term influence upon microbiome structure.

It is without question that our knowledge of the rumen microbiome has rapidly improved with
advancements in (meta)genome technologies, increases in mass spectrometry sensitivity
and evolution of computational methods that can accurately reconstruct high quality
genomes from complex microbial assemblages. Moreover, we show that the acceleration in
genome recovery of protozoal populations and their supplementation into rumen microbiome
databases has massively impacted our ability to estimate the transdomain microbial trophic
cascades that convert complex plant material into energy-yielding nutrients for the host
animal. Moving forward, several outstanding knowledge gaps need to be prioritized so that
greater microbiome resolution can be routinely gained. Laboratory-based experiments that
validate both proximity and metabolic interactions between protozoa, bacteria and archaea
will lead to improved interpretations of how protozoa modulate rumen biology and formulate
tools to potentially intervene where desired. Finally, more extensive surveys of increased
animal numbers, varying diets, breeds and management practices will need to be analyzed
at a depth comparative to the present study to ascertain the wider implications of
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protozoal-bacterial-archaeal interactions, and how that knowledge can be applied to improve
microbiome modulation strategies that make meaningful impact.

Material and Methods

Ethics statement

The animal experiment was conducted at the Beef and Sheep Research Centre of
Scotland’s Rural College (6 miles south of Edinburgh, UK). The experiment was approved by
the Animal Experiment Committee of SRUC and was conducted in accordance with the
requirements of the UK Animals (Scientific Procedures) Act 1986.

Experimental design and measurement of key performance
traits

An initial group of 80 animals representing two breeds of beef cattle (Aberdeen-Angus cross
(AAX, n = 40), and Luing (n = 40) was selected for the experiment. Of these, 71 (AAX: n =
36; Luing: n = 35) successfully completed the designed sampling scheme. All animals were
provided a typical basal diet consisting of whole crop barley (300 g/kg DM), grass silage
(200 g/kg DM), barley (355 g/kg DM), maize dark grains (120 g/kg DM), molasses (15 g/kg
DM) and minerals (10 g/kg DM). For half of the animals, the experimental design originally
involved supplementation with Asparagopsis taxiformis red algae vegetative tissue (thallus)
at 0.3% of the organic mass (OM). A. taxiformis is a feed additive which has been shown to
reduce methane emissions in past studies22–25. However, due to adverse effects observed in
animals during the planned three-week seaweed adaptation phase, supplementation was
terminated after just 15 days. All animals were given a further 5 weeks to adapt to basal feed
before performance testing was carried out. Due to this delay, the heaviest 32 animals,
balanced for breed, underwent a shorter performance test period of 4 weeks instead of the
normal 8 weeks. During performance testing, daily feed intake was recorded using electronic
feeders (HOKO, Insentec, Marknesse, The Netherlands). Twice weekly, duplicated samples
of each diet component were collected to determine dry matter content and to calculated dry
matter intake (DMI). Body weight of each animal was measured weekly to estimate average
daily gain (ADG) using a linear regression model including time on test. Feed conversion
ratio (FCR) was calculated for each animal as average daily DMI divided by ADG.

At the end of the experimental period, the animals’ methane emissions were measured in
respiration chambers. One week prior to entering the respiration chambers, the cattle were
single-housed in training pens, identical in size and shape to the pens inside the chamber, to
adapt to individual housing. The cattle were allocated to six respiration chambers based on
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the criterion of minimisation of the variation in body weight. They remained in the respiration
chambers for 3 days, which included one day for adaptation and a 48-hours measurement
period for methane emissions.

Of the 71 animals that completed the trial, 24 were selected for multi-omic analysis, including
equal numbers of the two breeds, and representing the full range of methane emissions. For
a further subset of six animals (out of 24), samples were also analyzed for a time series
collected during the experimental period using orogastric tubing, as described below.

Rumen content and tissue sample collection

On live animals, longitudinal rumen fluid samples (50 ml) were collected using a stomach
tube (16×2700 mm Equivet Stomach Tube; Jørgen Kruuse A/S, Langeskov, Denmark)
nasally and aspirating manually. Samples were collected prior to the adaptation phase to
seaweed, before and after the performance test as well as immediately after leaving the
respiration chambers. Additionally, rumen fluid samples (50 ml) were obtained after the
animals were slaughtered in a commercial abattoir, immediately after the rumen was opened
to be drained. Immediately after sampling, the rumen digesta was filtered through two layers
of muslin and a 5 ml sample of the filtered liquid was transferred into a 30ml universal
containing 10 ml of PBS-Glycerol, then stored in a freezer at -80°C.

Rumen cell wall samples were collected from the central region of the ventral sac before the
rumen had been washed. The ruminal tissue was dipped into a 125 ml beaker containing a
PBS solution to remove the ruminal digesta. The tissue was sliced using a sterile scalpel and
transferred to a 30 ml universal tube containing 5 ml RNALater. Additionally, liver samples
were taken by the meat inspector, with a section cut out using a sterile scalpel and then
stored in a 30 ml universal tube with 5 ml RNALater. All tissue samples were stored in a
freezer at -80 °C before being analyzed. Further details regarding the sampling and
experimental procedures carried out at SRUC can be found in previously published
studies26,27 which followed a similar protocol.

16S rRNA gene amplicon sequence data

Rumen digesta sample DNA extraction, PCR amplification and sequencing of 16S rRNA
gene amplicons was performed at DNASense ApS (Aalborg, Denmark).

Sample DNA extraction

Rumen digesta DNA was extracted using the FastDNA Spin kit for Soil (MP Biomedicals,
USA) with the following exceptions to the standard protocol: 500 μL of sample, 480 μL
Sodium Phosphate Buffer and 120 μL MT Buffer were added to a Lysing Matrix E tube. Bead
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beating was performed at 6 m/s for 4x40s. Gel electrophoresis using Tapestation 2200 and
Genomic DNA screentape (Agilent, USA) was used to validate product size and purity of a
subset of DNA extracts. DNA concentration was measured using Qubit dsDNA HS/BR
Assay kit (Thermo Fisher Scientific, USA).

Sequencing library preparation

Amplicon libraries for the 16S rRNA gene variable region 4 (abV4-C) were prepared using a
custom protocol based on an Illumina protocol28. Up to 10 ng of extracted DNA was used for
PCR amplification. Each reaction (25 μL) contained (12.5 μL) PCRBIO Ultra mix and 400 nM
of each forward and reverse tailed primer mix. The PCR program was as follows: initial
denaturation at 95 °C for 2 min, 30 cycles of amplification (95 °C for 15 s, 55 °C for 15 s, 72
°C for 50 s) and a final elongation at 72 °C for 5 min. Duplicate reactions were performed for
each sample and the duplicates pooled afterwards. The primers targeting the abV4-C region
were the following, designed according to28 : [515FB] GTGYCAGCMGCCGCGGTAA and
[806RB] GGACTACNVGGGTWTCTAAT29, with tails that enable attachment of Illumina
Nextera adaptors necessary for sequencing in a subsequent round of PCR. The amplicon
libraries were purified using the standard protocol for CleanNGS SPRI beads (CleanNA, NL)
with a bead to sample ratio of 4:5. DNA was eluted in 25 μL of nuclease free water (Qiagen,
Germany). DNA concentration was measured using Qubit dsDNA HS Assay kit (Thermo
Fisher Scientific, USA). Gel electrophoresis using Tapestation 2200 and D1000/High
sensitivity D1000 screentape (Agilent, USA) was used to validate product size and purity of a
subset of libraries.

Sequencing libraries were prepared from purified amplicon libraries using a second PCR.
Each reaction (25 μL) contained PCRBIO HiFi buffer (1x), PCRBIO HiFi Polymerase (1
U/reaction) (PCRBiosystems, UK), adaptor mix (400 nM of each forward and reverse) and
up to 10 ng of amplicon library template. PCR was done with the following program: initial
denaturation at 95 °C for 2 min, 8 cycles of amplification (95 °C for 20 s, 55 °C for 30 s, 72
°C for 60 s) and a final elongation at 72 °C for 5 min. The resulting libraries were purified
following the same protocol as above for the first PCR.

DNA sequencing

The purified sequencing libraries were pooled in equimolar concentrations and diluted to 2
nM. The samples were paired-end sequenced (2x300 bp) on a MiSeq (Illumina, USA) using
a MiSeq Reagent kit v3 (Illumina, USA) following the standard guidelines for preparing and
loading samples on the MiSeq. > 10 % PhiX control library was spiked in to overcome low
complexity issues often observed with amplicon samples.
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Sequence data analysis

Quality trimming and amplicon sequence variant (ASV) inference for the 16S rRNA gene
amplicon sequence data was performed with dada230 following the recommended Big Data
Paired-end workflow31 using default parameters, except for the following choices for the
filterAndTrim step: truncLen = 240 for forward, 200 for reverse reads; trimLeft = 20 for
forward, 30 for reverse reads; maxEE = 2, and truncQ = 6. The reference database for
taxonomic classification was the dada2 formatted version of release 214 of the Genome
Taxonomy Database (GTDB)32.

Metagenomics

DNA extraction and sequencing as well as initial metagenomic sequence data analysis for
rumen digesta samples was performed at DNASense ApS (Aalborg, Denmark).

DNA extraction

DNA intended for sequencing on the Illumina platform was extracted during the workflow for
16S rRNA gene amplicon data, as described above. DNA intended for ONT sequencing was
extracted with the DNeasy PowerSoil Kit (Qiagen, Germany) and further cleaned with the
DNeasy PowerClean Pro Cleanup Kit (Qiagen, Germany). A custom SPRI (Solid Phase
Reversible Immobilization) short fragment removal step was implemented to remove
fragments shorter than approximately 1500-2000 bp. DNA concentration and purity was
assessed using the Qubit dsDNA HS Assay kit (Thermo Fisher Scientific, USA) and the
NanoDrop One device (Thermo Fisher Scientific, USA). DNA size distribution was evaluated
using the Genomic DNA ScreenTape on the Agilent Tapestation 2200 (Agilent, USA).

Illumina sequencing

Extracted DNA was fragmented to approximately 550 bp using a Covaris M220 with
microTUBE AFA Fiber screw tubes and the settings: Duty Factor 10 %, Peak/Displayed
Power 75W, cycles/burst 200, duration 40s and temperature 20 °C. The fragmented DNA
was used for metagenome preparation using the NEB Next Ultra II DNA library preparation
kit. The DNA library was paired-end sequenced (2 x 150 bp) on a NovaSeq S4 system
(Illumina, USA).

Oxford Nanopore sequencing

SQK-LSK114 sequencing libraries were prepared according to manufacturer
recommendations with a minor custom modification to allow for native barcoding using kits
EXP-NBD104 and EXP-NBD114 (Oxford Nanopore Technologies, Oxford, UK). Briefly;
before initiating the SQK-LSK114 protocol, native barcodes were ligated onto end-prepped
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sample DNA (100-200 fmol) using NEB Blunt/TA ligase mastermix (New England Biolabs,
USA). Approximately 10-20 fmol barcoded DNA library were loaded onto primed
PromethION FLO-PRO114M (R10.4.1) flow cells and sequenced on the PromethION P2
Solo device running MinKNOW Release 22.07.3 (MinKNOW Core 5.3.0-rc3-p2solo).

Data preprocessing

Raw Illumina reads were filtered for PhiX using Usearch1133 and trimmed for adapters using
cutadapt34 (v. 3.5). Forward and reverse read files were concatenated using a custom python
script. Raw Oxford Nanopore fast5 files were basecalled and demultiplexed in Guppy v.
6.1.15 using the dna_r10.4.1_E8.2_400bps_sup algorithm. Adapters were removed in
Porechop v. 0.2.4 using default settings. NanoStat v.1.4.035 was used to assess quality
parameters of the basecalled data. The adapter-trimmed data was then filtered in Filtlong v.
0.2.1 with –min_length set to 1500 bp and –min_mean_q set to 96 (q-score of 14).

Metagenome de novo assembly

Draft de novo co-assembly for metagenomes was performed in six groups of
samples/animals (combinations of control and treatment, corresponding to the seaweed
supplementation, and a three-category methane variable representing low, medium and high
emission levels) using Flye (v.2.9.1-b178036) by setting the metagenome parameter (–meta).
Draft metagenomes were first polished with Medaka (v.1.7.1) using quality-filtered Oxford
Nanopore R10.4.1 data, following further polishing with minimap2 (v. 2.24-r112237) and
racon38 (v.1.5.0) using Illumina data covering the relevant metagenome sample trajectory.

MAG binning

Each metagenome assembly was subjected to independent and automated genome binning
using Metabat2 v. 2.1538 and Vamb39 (v. 4.1.1). MAGs from each metagenome were
subsequently dereplicated using dRep40 (v. 3.2.2) setting minimum MAG length to 250000 bp
(-l). All dereplicated MAGs from each metagenome assembly were finally pooled and
dereplicated again (cross-dereplicated) with dRep.

Hybrid Metagenomic Assembly and Binning

Samples containing paired short-read and nanopore metagenomes were processed using a
hybrid assembly approach, followed by MAG recovery through the Aviary41 v0.5.7 pipeline
(https://github.com/rhysnewell/aviary) using the recover workflow with default settings. The
resulting assemblies were manually inspected using Bandage to identify and verify closed
genomes. A total of 4,469 redundant MAGs were recovered. Completeness and
contamination rates were assessed with CheckM242 v1.0.1 using the lineage wf command.
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Only MAGs with >70% completeness and <10% contamination were retained for further
analysis. To address potential multi-mapping issues during meta-omic relative abundance
calculations, the genomes were dereplicated using a custom script. Pairwise Average
Nucleotide Identity (ANI) values were calculated for all MAGs using Skani43. Genomes with
>97% ANI and >50% alignment were clustered using complete linkage clustering. The
highest-quality MAG within each cluster was selected as the representative genome. The
quality score was calculated using the following metric: completeness - 5*contamination -
5*num_contigs/100 - 5*num_ambiguous_bases/100000, as described by Parks et al.
(2020)44. This clustering process was iteratively repeated until no further clustering of
representative MAGs was possible. This resulted in a nonredundant set of 700 MAGs.

Rumen microbial genome database for metatranscriptomics
and metaproteomics

For metatranscriptomic and metaproteomic data analyses, we built databases consisting of 6
parts representing different sources and taxonomic domains:

A. 700 MAGs assembled from our digesta samples, both archaea and bacteria.
B. Bos taurus host genome ARS-UCD1.345 GCF_002263795.2 (NCBI

BioprojectPRJNA391427).
C. Entodinium caudatum genome46 (NCBI Bioproject PRJNA380643).
D. 52 protozoal SAGs genomes2 (NCBI Bioproject PRJNA777442).
E. 9 fungal genomes from phylum neocallimastigomycota10.
F. 14 bacterial genomes of genus Campylobacter genomes47.

This total rumen microbial genome database consisted of 4.2 M proteins with an average
length of 426.8 amino acids totalling 1.8 G amino acid letters.

Annotation of genomes and characterization of proteins

For the 700 recovered MAGs (A) and 14 Campylobacter spp. genomes (F), Prokka48 v1.14.6
was used for annotation and to translate the coding sequences. CheckM249 v1.0.2 was used
for assessment of completeness and contamination. The remaining database parts (B–E)
were downloaded as amino acid sequences. Translated genes of the complete rumen
genome database (A–F) were characterized functionally using eggnog-mapper50 v2.1.12,
resulting in the identification of PFAM51, CAZy52, and KEGG53 orthologs. Pathway enrichment
analysis was calculated using the KEGG orthologs and KEGG pathway database54

(downloaded on 2023-08-28) via clusterProfiler55 v4.10.0. Taxonomic identification of MAGs
were done with GTDB-tk56 v2.4.0 using database r214. The genomic characterization tools
mentioned above were run via CompareM257 v2.11.1. For screening of metabolic capacities,
DRAM v1.4 was used using default settings.
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Meta- and host transcriptomics

RNA extraction and sequencing for rumen digesta, wall and liver samples, as well as
bioinformatic analyses for rumen wall and liver sequence data, were performed at
DNASense ApS (Aalborg, Denmark).

RNA extraction

RNA extraction for rumen digesta, rumen wall and liver samples was performed with the
standard protocol for RNeasy PowerMicrobiome Kit (Qiagen, Germany) with minor
modifications: custom reagent volumes were used, PM4 buffer was replaced with 70 %
ethanol in initial extraction mix, and bead beating was performed at 6 m/s for 4x40s. Gel
electrophoresis using Tapestation 2200 and RNA screentape (Agilent, USA) was used to
validate product integrity and purity of RNA extracts. RNA concentrations were measured
using Qubit RNA HS/BR Assay kit (Thermo Fisher Scientific, USA). The extracted RNA was
treated with the TURBO DNAfree (Thermo Fisher Scientific, USA) to ensure removal of all
DNA in the samples. Afterwards the RNA was quality controlled using RNA screentape
(Agilent, USA) and Qubit RNA HS/BR Assay kit (Thermo Fisher Scientific, USA).

Sequencing library preparation

RNA extracts were rRNA depleted using the Ribo-Zero Plus rRNA Depletion Kit (Illumina,
USA), and residual DNA from RNA extraction was removed using the DNase MAX kit
(MoBio Laboratories Inc.). The samples were purified using the standard protocol for
CleanPCR SPRI beads (CleanNA, NL) and further prepared for sequencing using the
NEBNext Ultra II Directional RNA library preparation kit (New England Biolabs). Library
concentrations were measured using Qubit HS DNA assay and library DNA size estimated
using TapeStation with D1000 ScreenTape. The samples were pooled in equimolar
concentrations and sequenced (2 x 150 bp, PE) on a Novaseq platform (Illumina, USA). All
kits were used as per the manufacturer’s instructions with minor modifications.

Host transcriptome mapping

Forward and reverse sequencing cDNA reads were quality-filtered and trimmed for Illumina
adapters using Cutadapt v. 3.758 used in paired-end mode. For liver and rumen wall data, the
reads were subsequently mapped against the Bos Taurus Genome Reference ARS-UCD1.3
(Genbank assembly accession GCA_002263795.3). The genome and its associated gene
transfer format file (GTF) were downloaded and indexed using STAR v2.7.10a59, setting a
sjdbOverhang of 149 bp. Adapter-trimmed sample reads were mapped against the indexed
genome of ARS-UCD1.3 using STAR v2.7.10a in paired-end mode, with the option
-outReadsUnmapped Fastx enabled. Alignments were ported to coordinate-sorted BAM
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files, and FeatureCounts v2.0.1 of the SubRead package60 was used to quantify CDS
mappings as counts. Where nothing else is stated, the default settings were used for all
bioinformatic tools.

Rumen wall metatranscriptome mapping

For rumen wall samples, the forward and reverse cDNA reads that did not map against the
Bos taurus genome were bioinformatically depleted for rRNA using Ribodetector v. 0.2.761

and then mapped against the rumen MAGs. Prior to mapping, the concatenated MAGs were
indexed using STAR62 v2.7.10a. The rRNA-depleted and quality filtered DNA reads were
mapped against the MAGs with STAR, setting alignIntronMax to 1. All alignments were
ported to coordinate-sorted BAM files.

Rumen content metatranscriptomics

Rumen content data were mapped against the Bos taurus genome (Genome Reference
ARS-UCD1.3) using minimap2 v 2.2. All non-paired mapped reads were retrieved using
samtools v 1.1763 with the following parameters samtools fastq -f 12 -F 256 -c 7 -1
read1.fq.gz -2 read2.fq.gz. rRNA reads present in the samples were bioinformatically
removed using SortMeRNA v 4.3.664 with the following SILVA databases: silva-bac-16s-id90,
silva-arc-16s-id95, silva-bac-23s-id98, silva-arc-23s-id98, silva-euk-18s-id95 and
silva-euk-28s-id98, and the parameters –out2–paired_out –fastx–thread 64. These reads
were used to quantify the expression of coding sequences (CDS) encoded in the rumen
microbial genome database using Kallisto65 v0.50.0. The resulting ‘raw-counts’ tables were
gathered into a single table using the Bioconductor tximport66 v1.26.1 library in R 4.2.2.

Meta- and host proteomics

Proteomic and metaproteomic measurements and all bioinformatic analyses for rumen
digesta, wall and liver samples were performed at the Norwegian University of Life Sciences
(NMBU; Ås, Norway).

Protein extraction and digestion

Protein extraction was performed following a previously published protocol1. Briefly, 300 μL
of rumen fluid sample or a representative amount of wall or liver tissue sample was
combined with 150 μL lysis buffer (30 mM DTT, 150 mM Tris-HCl (pH = 8), 0.3% Triton
X-100, 12% SDS) and 4 mm glass beads (≤160 μm), then vortexed and rested on ice for 30
mins. Sample lysis was performed with a FastPrep-24 Classic Grinder (MP Biomedical,
Ohio, USA) for 3 × 60 s at 4.0 m/s67, followed by centrifugation at 16,000 × g for 15 min at 4
°C. Lysate was removed and its absorbance measured at A750 on BioTek Synergy H4
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Hybrid Microplate Reader (Thermo Fisher Scientific Inc., Massachusetts, USA). 40–50 μg of
protein was prepared in SDS-buffer, heated in a water bath for 5 min at 99 °C, and analyzed
by SDS-PAGE with Any-kD Mini-PROTEAN TGX Stain-Free gels (Bio-Rad, California, USA)
in a 2 minute run for sample clean-up, before staining with Coomassie Blue R-250. Visible
bands were excised and divided into 1 mm2 pieces before reduction, alkylation and trypsin
digestion. Peptides were concentrated and eluted using C18 ZipTips (Merck Millipore,
Darmstadt, Germany) following manufacturer’s instructions.

Mass spectrometry

The peptide samples were analyzed by coupling a nano UPLC (nanoElute, Bruker) to a
trapped ion mobility spectrometry/quadrupole time of flight mass spectrometer (timsTOF Pro,
Bruker). The peptides were separated by a PepSep Reprosil C18 reverse-phase (1.5 µm,
100Å) 25 cm X 75 μm analytical column coupled to a ZDV Sprayer (Bruker Daltonics,
Bremen, Germany). The temperature of the column was kept at 50°C using the integrated
oven. Equilibration of the column was performed before the samples were loaded
(equilibration pressure 800 bar). The flow rate was set to 300 nl/min and the samples were
separated using a solvent gradient from 5 % to 25 % solvent B over 70 minutes, and to 37 %
over 9 minutes. The solvent composition was then increased to 95 % solvent B over 10 min
and maintained at that level for an additional 10 min. In total, a run time of 99 min was used
for the separation of the peptides. Solvent A consisted of 0.1 % (v/v) formic acid in milliQ
water, while solvent B consisted of 0.1 % (v/v) formic acid in acetonitrile.

The timsTOF Pro was run in positive ion data dependent acquisition PASEF mode with the
control software Compass Hystar version 5.1.8.1 and timsControl version 1.1.19 68. The
acquisition mass range was set to 100 – 1700 m/z. The TIMS settings were: 1/K0 Start 0.85
V⋅s/cm2 and 1/K0 End 1.4 V⋅s/cm2, Ramp time 100 ms, Ramp rate 9.42 Hz, and Duty cycle
100 %. The Capillary Voltage was set at 1400 V, Dry Gas at 3.0 l/min, and Dry Temp at 180
℃. The MS/MS settings were the following: number of PASEF ramps 10, total cycle time
0.53 sec, charge range 0-5, Scheduling Target Intensity 20000, Intensity Threshold 2500,
active exclusion release after 0.4 min, and CID collision energy ranging from 27-45 eV.

Data analysis

The raw spectra were analyzed using mspipeline168 v2.0.0 based on FragPipe69 v19.1.
Using Philosopher70 v4.8.1, MSFragger71 v3.7 and IonQuant v1.8.10. Spectra were analyzed
slicing the rumen microbial genome database into 16 parts using
msfragger.misc.slice-db=12. Mass calibration was disabled with
msfragger.calibrate_mass=0. The maximum length of peptides to be generated during
in-silico digestion was 35 with msfragger.digest_max_length=35. Allowed number of missed
cleavages 1 and 2 was set to 1 with msfragger.allowed_missed_cleavage_{1,2}=1.
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Otherwise, default settings were used. The processing was performed on an AMD x86-64
“Threadripper Pro” 5995WX 64 cores, 8 memory channels, 512GiB DDR4 3200MHz ECC
(8x 64 GiB) and 4 2TB SSDs in raid0.

Proteomic intensities were log2-transformed prior to any statistical analysis. Genes in the
proteomic database were annotated using eggnog e-mapper v2.1.12 using CompareM2
v2.11.1. Missing values were imputed using missRanger72 v2.6.0.

Untargeted metabolomics

Untargeted metabolomic analyses for rumen digesta, rumen wall, and liver samples were
carried out by MS-Omics Aps (Vedbæk, Denmark). Compound identification was performed
at four levels: Level 1: identification by retention times (compared against in-house authentic
standards), accurate mass, and MS/MS spectra; Level 2a: identification by retention times
(compared against in-house authentic standards), and accurate mass; Level 2b:
identification by accurate mass, and MS/MS spectra; Level 3: identification by accurate mass
alone. A deviation of 3 ppm was accepted for accurate mass identification.

Sample extraction
Rumen digesta samples were vortexed and an aliquot (100 µl) transferred to a spin filter
(0.22µm). The aliquot was diluted with water (100 µl) and filtered by centrifugation (7000
rpm, 2 x 5 min, 4°C). Filtered extracts were diluted 10 times in mobile phase eluent A and
fortified with stable isotope labeled standards before analysis.

Rumen wall and liver samples were mixed with ceramic beads and precooled
methanol/water (1:2) fortified with stable isotope labeled standards. The samples were then
placed in a pre-cooled (-20°C) bead beater and homogenized (4 x 30 sec., 30 Hz) followed
by ultrasonication (5 min). After centrifugation (18000 RCF, 5 min, 4°C), the supernatant of
each tube was collected. The sample pellets were re-extracted as described above. The two
extract supernatants were pooled and passed through a phosphor removal cartridge (Phree,
Phenomenex). A precise aliquot of the extract was evaporated to dryness under a gentle
stream of nitrogen, before reconstitution with 10% Eluent B in Eluent A.

LC-MS method
All samples were analyzed using a Thermo Scientific Vanquish LC coupled to an Orbitrap
Exploris 240 MS instrument (Thermo Fisher Scientific). An electrospray ionization interface
was used as the ionization source. Analysis was performed in positive and negative
ionization mode under polarity switching. Ultra-performance liquid chromatography was
performed using a slightly modified version of a published protocol73. Peak areas were
extracted using Compound Discoverer (Thermo Scientific) version 3.2 (digesta) or 3.3 (liver
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and wall). For the wall and liver samples, probabilistic quotient normalization was applied
prior to further analyses, to decrease concentration effects.

Volatile fatty acid quantification

Rumen digesta samples were thawed on ice and centrifuged when still cold. 450 µL of each
sample was transferred to a new tube and 50 µL of a 50% formic acid solution was added to
reach a 5 % concentration of formic acid. Samples were then centrifuged again and 400 µL
of the supernatant was transferred to a GC-vial, with 1000 µL of an internal standard solution
added. Volatile fatty acids were separated using gas chromatography (Trace 1300 GC with
autosampler, Thermo Scientific) with a Stabilwax-DA column (30m, 0.52 mm ID, 0.25 µm,
Restek).

Microarray polymer profiling

Microarray polymer profiling (MAPP) entails the printing of extracted glycans as high-density
microarrays which are then probed with monoclonal antibodies with specificities for different
glycan epitopes. The output from MAPP provides insight into the relative abundance of
epitopes across the sample set.

Alcohol insoluble residues (AIR) were prepared from each rumen digesta sample (n=24) as
follows: samples were homogenized to a fine powder using a tissue lyser (Qiagen).
Approximately five volumes of 70% ethanol were added, the samples vortexed for 10
minutes then centrifuged at 2,700 g for 10 minutes and the supernatants discarded, This
step was repeated. Approximately five volumes of 1:1 methanol and chloroform were added
to the pellet and the samples were again vortexed and centrifuged as previously. Finally,
approximately five volumes of acetone were added and the same vortexing and
centrifugation steps performed. The resulting pellets were AIR.

To extract glycans, 300 μL of 50 mM diamino-cyclo-hexane-tetra acetic acid, pH 7.5, were
added to 10 mg AIR. After agitation in a tissue lyser (27 s-1 for 2 minutes and 10 s-1 2
hours), samples were centrifuged at 2,700 g for 10 minutes. The supernatant was removed,
300 μL 4M NaOH with 1% v/v NaBH4 added to the pellet and the agitation and centrifugation
steps repeated. The resultant NaOH extraction supernatants were diluted sequentially
(1/2,1/5,1/5,1/5) in microarray printing buffer (55.2% glycerol, 44% water and 0.8% Triton
X-100), and the four dilutions were printed in quadruplet onto nitrocellulose membranes
using a non-contact microarray robot (Arrayjet, Roslin). Thus, every replicate was
represented by a 16-spot subarray (four concentrations and four printing replicates). Arrays
were probed with monoclonal antibodies, scanned, uploaded into microarray analysis
software (Array Pro Analyzer 6.3, Media Cybernetics) and mean spot signals from each sub
array calculated.
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Statistics and data visualization

Unless otherwise specified, statistical analyses and visualizations were performed in the R
statistical programming language74 (v. 4.3.2). The knitr75 package (v. 1.45) was used for
reporting, renv76 (v. 1.0.7) for package management, ggplot277 (v. 3.5.1) for visualizations,
cowplot78 (v. 1.1.3) for composing multipanel figure layouts, and ComplexHeatmap79 (v.
2.15.4) for heatmaps.

16S rRNA gene ASV data was managed with phyloseq80 (v. 1.46.0), which was also used to
calculate alpha diversity indices. Rumen community types (RCTs) were defined using the
ASVs data and Dirichlet Multinomial Mixtures81 clustering implemented with mia82 (v. 1.10.0),
selecting the optimal number of clusters based on the Laplace method. Only ASVs that were
present in at least half of all slaughter timepoint samples (n = 35) were used for this analysis.

All beta diversity comparisons for ASV counts and MAG relative abundances were
performed using vegan83 (v. 2.6-6), with robust Aitchison distances statistically compared
with PERMANOVA (adonis2; 9999 permutations), and visualized with PCoA (package ape84,
v. 5.8). Principal Component Analysis (PCA) for all other omic data types was run with the
“prcomp” function. For (meta)transcriptomic data (variance stabilizing transformed (VST)
counts) and (meta)proteomic data (log2 transformed LFQ intensities with imputed missing
values), the 1000 features with the highest variance were selected for PCA. For untargeted
metabolomic data, where the number of features was orders of magnitude lower, all features
were used, except for rumen digesta, where features with annotation level 3 were excluded.

Where statistical testing was done between two categorical variables, Fisher’s exact tests
were used. Continuous variables were compared either with t-tests (KPTs and other
animal-related metrics, Principal Component scores), or Wilcoxon rank sum tests (alpha
diversity indices, metagenomic relative abundances, proteomic LFQ intensities, MAPP
intensities, normalized intensities of metabolites from untargeted measurements, and molar
percentages of volatile fatty acids) with multiple comparison correction using the “fdr” option
of the “p.adjust” function. Differential abundance comparisons for count data (ASVs and
meta- and host transcriptomics) were run with DESeq285 (v. 1.42.1), with default parameters
for transcriptomic data, and the “sfType” parameter changed to "poscounts" for ASV data.

Network analysis (WGCNA)

Correlation-network based analysis was applied on the proteomic and metaproteomic
samples to group co-expressed proteins into clusters. Weighted gene co-expression network
analysis21 (WGCNA) v1.73 was applied on data that included imputed missing values to
construct clusters independently in the digesta, rumen wall epithelium, and liver samples.
These clusters were then correlated via their eigengenes across samples to obtain
host-microbiome boundary-links.
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Code availability
The R code for the figures and related results tables is available at
https://github.com/TheMEMOLab/supacow-share

The code to perform proteomic network analysis using WGCNA is available at
https://github.com/cmkobel/holodoublevu
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Figure 2. Microbiome analyses revealing two distinct groups of animals, labeled as Rumen
Community Type-A and -B.

Figure 3. Differential abundances of taxa across omics.

Figure 4. Functional differences between rumen community types.

Figure 5: Metabolic predictions from major populations strongly featured in RCT-A and -B
animals that are predicted to influence rumen function.

Extended Data Figures & Tables
Extended Data Fig 1. 16S rRNA gene amplicon sequence data analysis results for 71
animals

Extended Data Fig 2. Comparisons of rumen microbial community types and technical and
animal-related variables.

Extended Data Fig 3. Heatmap of Spearman correlations between archaea and bacteria of
interest and ciliates in metatranscriptomic and metaproteomic data.

Extended Data Fig 4. Ciliate abundances in rumen digesta samples over time for select
species.

Extended Data Fig 5. Heatmap of WGCNA results of rumen digesta metaproteomics.

Extended Data Fig 6. Heatmap of WGCNA results of rumen wall metaproteomics.
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Supplementary Table 1. A. MAG statistics, B. Data overview/summaries.
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⃪Extended Data Fig 1. 16S rRNA gene amplicon sequence data analysis results for 71 animals. a.
Alpha diversity, showing Shannon and inverse Simpson indices for treatment (short-term seaweed
supplementation), breed (Aberdeen Angus X vs Luing) and methane emission level (binary categorical
variable based on median CH4 g/kg DMI). Box hinges represent the 1st and 3rd quartiles; whiskers range
from hinge to the highest and lowest values that are within 1.5*IQR of the hinge. b. Beta diversity visualized
with Principal Coordinates Analysis of robust Aitchison distances and statistically compared with
PERMANOVA (adonis), showing the three main grouping variables (treatment, breed and methane emission
category) as well as the three tested variables with the lowest p-value (liveweight, slaughter group and
delivery batch). All p-values shown without multiple comparison correction.
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Extended Data Fig 2. Comparisons of rumen community types and technical and animal-related
variables. a. Statistical comparisons of variables against the two community types, with t-tests for numerical
variables and Fisher’s exact tests for categorical variables. p-values have not been corrected for multiple
comparisons. b. Principal Coordinates Analysis with robust Aitchison distances of rumen digesta 16S rRNA
gene amplicon sequence data, showing samples from all six time points. Numbers correspond to timepoint,
colors to rumen microbial community type, and the 24 animals chosen for deeper analysis are indicated with
larger symbols. Samples from the same animal are connected with lines in sequential order. Ellipses indicate
95% confidence levels for sample types: tube sampling (timepoints 1-5; dashed line) or post-slaughter
sampling (timepoint 6, continuous line).
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⃪Extended Data Fig 3. Heatmap of Spearman correlations between archaea and bacteria of interest
and ciliates in metatranscriptomic and metaproteomic data. Rows correspond to individual archaeal and
bacterial MAGs, and are labeled according to the genus classification of the MAGs. Columns correspond to
individual ciliate SAGs (and “Ent_caudatum”, representing the first published genome available for
Entodinium caudatum), ordered according to their differential abundance between the two rumen community
types (RCT-A and -B) in either metatranscriptomic (metaT) or metaproteomic (metaP) data. The plot shows
those MAGs that were among the genera with highest loadings in Fig 2e, and are significantly correlated (p
< 0.05) with at least 10 SAGs in both metatranscriptomic and metaproteomic data; the same MAGs are
shown in both the metaT and the metaP parts of the heatmap. Stars reflect uncorrected p-values as follows:
*** : p < 0.001, ** p < 0.01, * : p < 0.05, . : 0.1 > p > 0.05.
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⃪Extended Data Fig 4. Ciliate abundances in rumen digesta samples over time for select species.
Sampling for timepoints T1-T5 was performed through a nasogastric tube, while T6 was collected
post-slaughter. Lines connect samples from the same animal (with a total of 6 animals with time series data).
Shape and color correspond to rumen community type (RCT-A or -B). a. VST-normalized sums of counts per
ciliate species for metatranscriptomic data; missing one point (animal 28, T2) for which sampling was not
successful. b. Sums of LFQ intensities per ciliate species for metaproteomic data, excluding samples with <
1000 ciliate protein groups detected.
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⃪Extended Data Fig 5. Heatmap of WGCNA results of rumen digesta metaproteomics. Showing the 39
modules out of a total of 65 that had p < 0.05 for Pearson correlations with rumen community types (RCT).
“Metadata variables” rows show Pearson correlations between modules and animal metrics. “Pathways”
rows show those KEGG pathways of class "09100 Metabolism" that were significantly enriched using the
hypergeometric test in more than one RCT-correlated module. “Species” rows show the numbers of protein
groups per species assigned to the modules, including the top ten taxa with the most protein groups in the
RCT-correlated modules for bacteria and protozoa each, and the top five for archaea and fungi. The “Wall
modules” rows indicate biweight midcorrelation between digesta and wall modules.

Extended Data Fig 6. Heatmap of WGCNA results of rumen wall metaproteomics. Showing the 2
modules out of a total of 19 that had p < 0.05 for Pearson correlations with rumen community types (RCT).
“Metadata variables” rows show Pearson correlations between modules and animal metrics. “Pathways”
rows show those KEGG pathways of class "09100 Metabolism" that were significantly enriched using the
hypergeometric test in more than one RCT-correlated module. “Species” rows show the numbers of protein
groups per species assigned to the modules, including all taxa with more than 2 protein groups detected.
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